

Signac (core) package documentation

Note

This is documentation for the signac core package, which is part of the signac [http://www.signac.io/] framework.
See here [https://docs.signac.io/] for a comprehensive introduction to the signac framework.

Contents

	Installation
	Install with conda

	Install with pip

	Source Code Installation

	Optional dependencies

	Command Line Interface
	clone

	config

	diff

	document

	export

	find

	import

	index

	init

	job

	move

	project

	rm

	schema

	shell

	statepoint

	sync

	update-cache

	view

	API Reference
	The Project

	The JobsCursor class

	The Job class

	The Collection

	The JSONDict

	The H5Store

	The H5StoreManager

	Top-level functions

	Submodules

	synced_collections package

	Changelog
	Version 1

	Version 0.9

	Version 0.8

	Version 0.7

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3

	Version 0.2

	Support and Development
	Code contributions

Indices and tables

	Index

	Module Index

	Search Page

Installation

The recommended installation method for signac is via conda [https://conda.io/] or pip [https://pip.pypa.io/en/stable/].
The software is tested for Python versions 3.6+ and has minimal dependencies.
Some features such as the HDF5 integration require additional packages.
Supported Python and NumPy versions are determined according to the NEP 29 deprecation policy [https://numpy.org/neps/nep-0029-deprecation_policy.html].

Install with conda

You can install signac via conda (available on the conda-forge [https://conda-forge.org/] channel), with:

$ conda install -c conda-forge signac

All additional dependencies will be installed automatically.
To upgrade the package, execute:

$ conda update signac

Install with pip

To install the package with the package manager pip [https://pip.pypa.io/en/stable/], execute

$ pip install signac --user

Note

It is highly recommended to install the package into the user space and not as superuser!

To upgrade the package, simply execute the same command with the --upgrade option.

$ pip install signac --user --upgrade

Consider installing optional dependencies:

$ pip install pymongo passlib bcrypt --user

Source Code Installation

Alternatively you can clone the git repository [https://github.com/glotzerlab/signac] and execute the setup.py script to install the package.

git clone https://github.com/glotzerlab/signac.git
cd signac
python setup.py install --user

Consider installing optional dependencies.

Optional dependencies

Unless you install via conda [https://conda.io/], optional dependencies are not installed automatically.
In case you want to use extra features that require external packages, you need to install these manually.

Extra features with dependencies:

	MongoDB database backend

	required: pymongo

recommended: passlib, bcrypt

	HDF5 integration

	required: h5py

Command Line Interface

The following core signac functions are — in addition to the Python interface — accessible
directly via the $ signac command.

The commands can be roughly grouped by task, ordered by frequency of use:

	Using a project:

	
	statepoint

	document

	find

	shell

	schema

	diff

	Modifying a project:

	
	init

	config

	project

	job

	rm

	update-cache

	Sharing and archiving a project:

	
	view

	export

	import

	move

	clone

	sync

	index

clone

usage: signac clone [-h] project job_id [job_id ...]

positional arguments:
 project The root directory of the project to clone one or more jobs in.
 job_id One or more job ids. The corresponding jobs must be initialized.

optional arguments:
 -h, --help show this help message and exit

config

usage: signac config [-h] [-g] [-l] [-f] {show,set,host,verify} ...

positional arguments:
 {show,set,host,verify}

optional arguments:
 -h, --help show this help message and exit
 -g, --global Modify the global configuration.
 -l, --local Modify the local configuration.
 -f, --force Skip sanity checks when modifying the configuration.

diff

usage: signac diff [-h] [-p [PRETTY]] [-i [INDENT]] [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]]
 [job_id [job_id ...]]

Find the difference among job state points.

positional arguments:
 job_id One or more job ids. The corresponding jobs must be
 initialized.

optional arguments:
 -h, --help show this help message and exit
 -p [PRETTY], --pretty [PRETTY]
 Print state point in pretty format. An optional
 argument to this flag specifies the maximal depth a
 state point is printed.
 -i [INDENT], --indent [INDENT]
 Specify the indentation of the JSON formatted state
 point.
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Limit the diff to jobs matching this state point
 filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Show documents of jobs matching this document filter.

document

usage: signac document [-h] [-p [PRETTY]] [-i [INDENT]] [-s]
 [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]] [--index INDEX]
 [job_id [job_id ...]]

Print the document(s) corresponding to one or more job ids.

positional arguments:
 job_id One or more job ids. The job corresponding to a job id
 must be initialized.

optional arguments:
 -h, --help show this help message and exit
 -p [PRETTY], --pretty [PRETTY]
 Print document in pretty format. An optional argument
 to this flag specifies the maximal depth a document is
 printed.
 -i [INDENT], --indent [INDENT]
 Specify the indentation of the JSON formatted state
 point.
 -s, --sort Sort the document keys for output in JSON format.
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Show documents of jobs matching this state point
 filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Show documents of job matching this document filter.
 --index INDEX The filename of an index file.

export

usage: signac export [-h] [--move] [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]] [-j JOB_ID [JOB_ID ...]]
 target [schema_path]

Export the project data space (or a subset) to a directory, a zipfile, or a
tarball.

positional arguments:
 target The target to export to. May be a path to a directory,
 a zipfile, or a tarball.
 schema_path Specify an optional export path, based on the job
 state point, e.g., 'foo/{job.sp.foo}'.

optional arguments:
 -h, --help show this help message and exit
 --move Move data to export target instead of copying. Can
 only be used when exporting to a directory target.

select:
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Limit the jobs to export to those matching the state
 point filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Limit the jobs to export to those matching this
 document filter.
 -j JOB_ID [JOB_ID ...], --job-id JOB_ID [JOB_ID ...]
 Limit the jobs to export to those matching the
 provided job ids.

find

usage: signac find [-h] [-d DOC_FILTER [DOC_FILTER ...]] [-i INDEX]
 [-s [SHOW]] [--sp [SP [SP ...]]] [--doc [DOC [DOC ...]]]
 [-p [PRETTY]] [-1]
 [filter [filter ...]]

All filter arguments may be provided either directly in JSON encoding or in a
simplified form, e.g., -- $ signac find a 42 -- is equivalent to -- $ signac
find '{"a": 42}'.

positional arguments:
 filter A JSON encoded state point filter (key-value pairs).

optional arguments:
 -h, --help show this help message and exit
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 A document filter.
 -i INDEX, --index INDEX
 The filename of an index file.
 -s [SHOW], --show [SHOW]
 Show the state point and document of each job.
 Equivalent to --sp --doc --pretty 3.
 --sp [SP [SP ...]] Show the state point of each job. Can be passed the
 list of state point keys to print (if they exist for a
 given job).
 --doc [DOC [DOC ...]]
 Show the document of each job. Can be passed the list
 of document keys to print (if they exist for a given
 job).
 -p [PRETTY], --pretty [PRETTY]
 Pretty print output when using --sp, --doc, or
 ---show. Argument is the depth to which keys are
 printed.
 -1, --one-line Print output in JSON and on one line.

import

usage: signac import [-h] [--move] [--sync] [--sync-interactive]
 [origin] [schema_path]

Import an existing dataset into this project. Optionally provide a file path
based schema to specify the state point metadata. Providing a path based
schema is only necessary if the data set was not previously exported from a
signac project.

positional arguments:
 origin The origin to import from. May be a path to a directory,
 a zipfile, or a tarball. Defaults to the current working
 directory.
 schema_path Specify an optional import path, such as
 'foo/{foo:int}'. Possible type definitions include bool,
 int, float, and str. The type is assumed to be 'str' if
 no type is specified.

optional arguments:
 -h, --help show this help message and exit
 --move Move the data upon import instead of copying. Can only
 be used when importing from a directory.
 --sync Attempt recursive synchronization with default
 arguments.
 --sync-interactive Synchronize the project with the origin data space
 interactively.

index

usage: signac index [-h] [-t TAGS [TAGS ...]] [root]

positional arguments:
 root Specify the root path from where the main index is to
 be compiled.

optional arguments:
 -h, --help show this help message and exit
 -t TAGS [TAGS ...], --tags TAGS [TAGS ...]
 Specify tags for this main index compilation.

init

usage: signac init [-h] [-w WORKSPACE] project_id

positional arguments:
 project_id Initialize a project with the given project id.

optional arguments:
 -h, --help show this help message and exit
 -w WORKSPACE, --workspace WORKSPACE
 The path to the workspace directory.

job

usage: signac job [-h] [-w] [-c] [statepoint]

positional arguments:
 statepoint The job's statepoint in JSON format. Omit this argument to
 read from STDIN.

optional arguments:
 -h, --help show this help message and exit
 -w, --workspace Print the job's workspace path instead of the job id.
 -c, --create Create the job's workspace directory if necessary.

move

usage: signac move [-h] project job_id [job_id ...]

positional arguments:
 project The root directory of the project to move one or more jobs to.
 job_id One or more job ids. The corresponding jobs must be initialized.

optional arguments:
 -h, --help show this help message and exit

project

usage: signac project [-h] [-w] [-i] [-a]

optional arguments:
 -h, --help show this help message and exit
 -w, --workspace Print the project's workspace path instead of the project
 id.
 -i, --index Generate and print an index for the project.
 -a, --access Create access module for indexing.

rm

usage: signac rm [-h] [-c] [-i] [-v] job_id [job_id ...]

positional arguments:
 job_id One or more job ids of jobs to remove.

optional arguments:
 -h, --help show this help message and exit
 -c, --clear Do not completely remove, but only clear the job.
 -i, --interactive Request confirmation before attempting to remove/clear
 each job.
 -v, --verbose Be verbose when removing/clearing files.

schema

usage: signac schema [-h] [-x] [-t DEPTH] [-p PRECISION] [-r MAX_NUM_RANGE]
 [-f FILTER [FILTER ...]] [-d DOC_FILTER [DOC_FILTER ...]]
 [-j JOB_ID [JOB_ID ...]]

optional arguments:
 -h, --help show this help message and exit
 -x, --exclude-const Exclude state point parameters, which are constant
 over the complete project data space.
 -t DEPTH, --depth DEPTH
 A non-zero value will format the schema in a nested
 representation up to the specified depth. The default
 is a flat view (depth=0).
 -p PRECISION, --precision PRECISION
 Round all numerical values up to the given precision.
 -r MAX_NUM_RANGE, --max-num-range MAX_NUM_RANGE
 The maximum number of entries shown for a value range,
 defaults to 5.

select:
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Detect schema only for jobs that match the state point
 filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Detect schema only for jobs that match the document
 filter.
 -j JOB_ID [JOB_ID ...], --job-id JOB_ID [JOB_ID ...]
 Detect schema only for jobs with the given job ids.

shell

usage: signac shell [-h] [-c COMMAND] [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]] [-j JOB_ID [JOB_ID ...]]
 [file]

positional arguments:
 file Execute Python script in file.

optional arguments:
 -h, --help show this help message and exit
 -c COMMAND, --command COMMAND
 Execute Python program passed as string.

select:
 Specify one or more jobs to preset the `jobs` variable as a generator over
 all job handles associated with the given selection. If the selection
 contains only one job, an additional `job` variable is referencing that
 single job, otherwise it is `None`.

 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Reduce selection to jobs that match the given filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Reduce selection to jobs that match the given document
 filter.
 -j JOB_ID [JOB_ID ...], --job-id JOB_ID [JOB_ID ...]
 Reduce selection to jobs that match the given job ids.

statepoint

usage: signac statepoint [-h] [-p [PRETTY]] [-i [INDENT]] [-s]
 [job_id [job_id ...]]

Print the statepoint(s) corresponding to one or more job ids.

positional arguments:
 job_id One or more job ids. The corresponding jobs must be
 initialized.

optional arguments:
 -h, --help show this help message and exit
 -p [PRETTY], --pretty [PRETTY]
 Print state point in pretty format. An optional
 argument to this flag specifies the maximal depth a
 state point is printed.
 -i [INDENT], --indent [INDENT]
 Specify the indentation of the JSON formatted state
 point.
 -s, --sort Sort the state point keys for output.

sync

usage: signac sync [-h] [-v] [-a] [-r] [-l] [-p] [-o] [-g] [-t] [-x [EXCLUDE]]
 [-I] [--size-only] [--round-times] [-n] [-u]
 [-s {always,never,update,Ask}] [-k KEY] [--all-keys]
 [--no-keys] [-w] [--force] [-m] [--parallel [PARALLEL]]
 [--stats] [-H] [--json] [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]] [-j JOB_ID [JOB_ID ...]]
 source [destination]

Use this command to synchronize this project with another project; similar to
the synchronization of two directories with `rsync`. Data is always copied
from the source to the destination. For example: `signac sync
/path/to/other/project -u --all-keys` means "Synchronize all jobs within this
project with those in the other project; overwrite files if the source files
is newer and overwrite all conflicting keys in the project and job documents."

positional arguments:
 source The root directory of the project that this project
 should be synchronized with.
 destination Optional: The root directory of the project that
 should be modified for synchronization, defaults to
 the local project.

optional arguments:
 -h, --help show this help message and exit
 -v, --verbosity Set level of verbosity.
 -w, --allow-workspace
 Allow the specification of a workspace (instead of a
 project) directory as the destination path.
 --force Ignore all warnings, just synchronize.
 -m, --merge Clone all the jobs that are not present in destination
 from source.
 --parallel [PARALLEL]
 Use multiple threads for synchronization.You may
 optionally specify how many threads to use, otherwise
 all available processing units will be utilized.
 --stats Provide file transfer statistics.
 -H, --human-readable Provide statistics with human readable formatting.
 --json Print statistics in JSON formatting.

copy options:
 -a, --archive archive mode; equivalent to: '-rltpog'
 -r, --recursive Do not skip sub-directories, but synchronize
 recursively.
 -l, --links Copy symbolic links as symbolic links pointing to the
 original source.
 -p, --perms Preserve permissions.
 -o, --owner Preserve owner.
 -g, --group Preserve group.
 -t, --times Preserve file modification times (requires -p).
 -x [EXCLUDE], --exclude [EXCLUDE]
 Exclude all files matching the given pattern. Exclude
 all files if this option is provided without any
 argument.
 -I, --ignore-times Never rely on file meta data such as the size or the
 modification time when determining file differences.
 --size-only Ignore modification times during file comparison.
 Useful when synchronizing between file systems with
 different timestamp resolution.
 --round-times Round modification times during file comparison.
 Useful when synchronizing between file systems with
 different timestamp resolution.
 -n, --dry-run Do not actually execute the synchronization. Increase
 the output verbosity to see messages about what would
 potentially happen.
 -u, --update Skip files with newer modification time stamp.This is
 a short-cut for: --strategy=update.

sync strategy:
 -s {always,never,update,Ask}, --strategy {always,never,update,Ask}
 Specify a synchronization strategy, for differing
 files.
 -k KEY, --key KEY Specify a regular expression for keys that should be
 overwritten as part of the project and job document
 synchronization.
 --all-keys Overwrite all conflicting keys. Equivalent to
 `--key='.*'`.
 --no-keys Never overwrite any conflicting keys.

select:
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Only synchronize jobs that match the state point
 filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Only synchronize jobs that match the document filter.
 -j JOB_ID [JOB_ID ...], --job-id JOB_ID [JOB_ID ...]
 Only synchronize jobs with the given job ids.

update-cache

usage: signac update-cache [-h]

Use this command to update the project's persistent state point cache. This
feature is still experimental and may be removed in future versions.

optional arguments:
 -h, --help show this help message and exit

view

usage: signac view [-h] [-f FILTER [FILTER ...]]
 [-d DOC_FILTER [DOC_FILTER ...]] [-j JOB_ID [JOB_ID ...]]
 [-i INDEX]
 [prefix] [path]

Generate a human readable set of paths representing state points in the
workspace, e.g.
view/param_name_1/param_value_1/param_name_2/param_value_2/job. The leaf nodes
of this directory structure are symlinks (named "job") into the workspace
directory for that parameter combination. Note that all positional arguments
must be provided before any keyword arguments. In particular, the prefix and
path must be specified before arguments such as the filters, e.g. signac view
$PREFIX $VIEW_PATH -f FILTERS -d DOC_FILTERS.

positional arguments:
 prefix The path where the view is to be created. Defaults to
 view.
 path The path used for the generation of the linked view
 hierarchy, defaults to '{{auto}}' (see
 Project.export_to for information on how this is
 expanded).

optional arguments:
 -h, --help show this help message and exit

select:
 -f FILTER [FILTER ...], --filter FILTER [FILTER ...]
 Limit the view to jobs matching this state point
 filter.
 -d DOC_FILTER [DOC_FILTER ...], --doc-filter DOC_FILTER [DOC_FILTER ...]
 Limit the view to jobs matching this document filter.
 -j JOB_ID [JOB_ID ...], --job-id JOB_ID [JOB_ID ...]
 Limit the view to jobs with these job ids.
 -i INDEX, --index INDEX
 The filename of an index file.

API Reference

This is the API for the signac (core) application.

The Project

Attributes

	Project.build_job_search_index(index[, _trust])

	Build a job search index.

	Project.build_job_statepoint_index([…])

	Build a state point index to identify jobs with specific parameters.

	Project.check()

	Check the project’s workspace for corruption.

	Project.clone(job[, copytree])

	Clone job into this project.

	Project.config

	Get project’s configuration.

	Project.create_access_module([filename, …])

	Create the access module for indexing.

	Project.create_linked_view([prefix, …])

	Create or update a persistent linked view of the selected data space.

	Project.detect_schema([exclude_const, …])

	Detect the project’s state point schema.

	Project.data

	Get data associated with this project.

	Project.doc

	Get document associated with this project.

	Project.document

	Get document associated with this project.

	Project.dump_statepoints(statepoints)

	Dump the state points and associated job ids.

	Project.export_to(target[, path, copytree])

	Export all jobs to a target location, such as a directory or a (compressed) archive file.

	Project.find_job_ids([filter, doc_filter, index])

	Find the job_ids of all jobs matching the filters.

	Project.find_jobs([filter, doc_filter])

	Find all jobs in the project’s workspace.

	Project.fn(filename)

	Prepend a filename with the project’s root directory path.

	Project.get_id()

	Get the project identifier.

	Project.get_statepoint(jobid[, fn])

	Get the state point associated with a job id.

	Project.groupby([key, default])

	Group jobs according to one or more state point parameters.

	Project.groupbydoc([key, default])

	Group jobs according to one or more document values.

	Project.import_from([origin, schema, sync, …])

	Import the data space located at origin into this project.

	Project.id

	Get the project identifier.

	Project.index([formats, depth, skip_errors, …])

	Generate an index of the project’s workspace.

	Project.isfile(filename)

	Check if a filename exists in the project’s root directory.

	Project.min_len_unique_id()

	Determine the minimum length required for a job id to be unique.

	Project.num_jobs()

	Return the number of initialized jobs.

	Project.open_job([statepoint, id])

	Get a job handle associated with a state point.

	Project.read_statepoints([fn])

	Read all state points from a file.

	Project.repair([fn_statepoints, index, job_ids])

	Attempt to repair the workspace after it got corrupted.

	Project.reset_statepoint(job, new_statepoint)

	Overwrite the state point of this job while preserving job data.

	Project.root_directory()

	Return the project’s root directory.

	Project.stores

	Get HDF5-stores associated with this project.

	Project.sync(other[, strategy, exclude, …])

	Synchronize this project with the other project.

	Project.update_cache()

	Update the persistent state point cache.

	Project.update_statepoint(job, update[, …])

	Change the state point of this job while preserving job data.

	Project.workspace()

	Return the project’s workspace directory.

	Project.write_statepoints([statepoints, fn, …])

	Dump state points to a file.

	
class signac.Project(config=None, _ignore_schema_version=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The handle on a signac project.

Application developers should usually not need to
directly instantiate this class, but use
get_project() instead.

	Parameters

	
	config – The project configuration to use. By default, it loads the first signac
project configuration found while searching upward from the current
working directory (Default value = None).

	_ignore_schema_version (bool [https://docs.python.org/3/library/functions.html#bool]) – (Default value = False).

	
FN_CACHE = '.signac_sp_cache.json.gz'

	The default filename for the state point cache file.

	
FN_DOCUMENT = 'signac_project_document.json'

	The project’s document filename.

	
FN_STATEPOINTS = 'signac_statepoints.json'

	The default filename to read from and write state points to.

	
KEY_DATA = 'signac_data'

	The project’s datastore key.

	
build_job_search_index(index, _trust=False)

	Build a job search index.

	Parameters

	
	index (list [https://docs.python.org/3/library/stdtypes.html#list]) – A document index.

	_trust – (Default value = False).

	Returns

	A job search index based on the provided index.

	Return type

	JobSearchIndex

Deprecated since version 1.3: This will be removed in 2.0.

	
build_job_statepoint_index(exclude_const=False, index=None)

	Build a state point index to identify jobs with specific parameters.

This method generates pairs of state point keys and mappings of
values to a set of all corresponding job ids. The pairs are ordered
by the number of different values. Since state point keys may be
nested, they are represented as a tuple.
For example:

>>> for i in range(4):
... project.open_job({'a': i, 'b': {'c': i % 2}}).init()
...
>>> for key, value in project.build_job_statepoint_index():
... print(key)
... pprint.pprint(value)
...
('b', 'c')
defaultdict(<class 'set'>,
 {0: {'3a530c13bfaf57517b4e81ecab6aec7f',
 '4e9a45a922eae6bb5d144b36d82526e4'},
 1: {'d49c6609da84251ab096654971115d0c',
 '5c2658722218d48a5eb1e0ef7c26240b'}})
('a',)
defaultdict(<class 'set'>,
 {0: {'4e9a45a922eae6bb5d144b36d82526e4'},
 1: {'d49c6609da84251ab096654971115d0c'},
 2: {'3a530c13bfaf57517b4e81ecab6aec7f'},
 3: {'5c2658722218d48a5eb1e0ef7c26240b'}})

Values that are constant over the complete data space can be optionally
ignored with the exclude_const argument set to True.

	Parameters

	
	exclude_const (bool [https://docs.python.org/3/library/functions.html#bool]) – Exclude entries that are shared by all jobs
that are part of the index (Default value = False).

	index – A document index.

	Yields

	tuple – Pairs of state point keys and mappings of values to a set of all
corresponding job ids (Default value = None).

Deprecated since version 1.3: This will be removed in 2.0. Use the detect_schema() function instead.

	
check()

	Check the project’s workspace for corruption.

	Raises

	signac.errors.JobsCorruptedError – When one or more jobs are identified as corrupted.

	
clone(job, copytree=<function copytree>)

	Clone job into this project.

Create an identical copy of job within this project.

See signac clone for the command line equivalent.

	Parameters

	
	job (Job) – The job to copy into this project.

	copytree – (Default value = shutil.copytree() [https://docs.python.org/3/library/shutil.html#shutil.copytree])

	Returns

	The job instance corresponding to the copied job.

	Return type

	Job

	Raises

	DestinationExistsError – In case that a job with the same id is already
initialized within this project.

	
config

	Get project’s configuration.

	Returns

	Dictionary containing project’s configuration.

	Return type

	_ProjectConfig

	
create_access_module(filename=None, main=True, master=None)

	Create the access module for indexing.

This method generates the access module required to make
this project’s index part of a main index.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the access module file. Defaults to the standard name
and should usually not be changed.

	main (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, add directives for the compilation of a master index
when executing the module (Default value = True).

	master (bool [https://docs.python.org/3/library/functions.html#bool]) – Deprecated parameter. Replaced by main.

	Returns

	Access module name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Deprecated since version 1.5: This will be removed in 2.0. Access modules are deprecated.

	
create_linked_view(prefix=None, job_ids=None, index=None, path=None)

	Create or update a persistent linked view of the selected data space.

Similar to export_to(), this function expands the data space
for the selected jobs, but instead of copying data will create symbolic links to the
individual job workspace directories. This is primarily useful for browsing through
the data space using a file-browser with human-interpretable directory paths.

By default, the paths of the view will be based on variable state point keys as part
of the implicit schema of the selected jobs that we create the view for. For example,
creating a linked view for a data space with schema

>>> print(project.detect_schema())
{
 'foo': 'int([0, 1, 2, ..., 8, 9], 10)',
}

by calling project.create_linked_view('my_view') will look similar to:

my_view/foo/0/job -> workspace/b8fcc6b8f99c56509eb65568922e88b8
my_view/foo/1/job -> workspace/b6cd26b873ae3624653c9268deff4485
...

It is possible to control the paths using the path argument, which behaves in
the exact same manner as the equivalent argument for export_to().

Note

The behavior of this function is almost equivalent to
project.export_to('my_view', copytree=os.symlink) with the
major difference that view hierarchies are actually updated,
meaning that invalid links are automatically removed.

See signac view for the command line equivalent.

	Parameters

	
	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path where the linked view will be created or updated (Default value = None).

	job_ids (iterable) – If None (the default), create the view for the complete data space,
otherwise only for this iterable of job ids.

	index – A document index (Default value = None).

	path – The path (function) used to structure the linked data space (Default value = None).

	Returns

	A dictionary that maps the source directory paths to the linked
directory paths.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
data

	Get data associated with this project.

This property should be used for large array-like data, which can’t be
stored efficiently in the project document. For examples and usage, see
Centralized Project Data [https://docs.signac.io/en/latest/projects.html#centralized-project-data].

Equivalent to:

return project.stores['signac_data']

See also

H5Store : Usage examples.

	Returns

	An HDF5-backed datastore.

	Return type

	H5Store

	
detect_schema(exclude_const=False, subset=None, index=None)

	Detect the project’s state point schema.

See signac schema for the command line equivalent.

	Parameters

	
	exclude_const (bool [https://docs.python.org/3/library/functions.html#bool]) – Exclude all state point keys that are shared by all jobs within this project
(Default value = False).

	subset – A sequence of jobs or job ids specifying a subset over which the state point
schema should be detected (Default value = None).

	index – A document index (Default value = None).

	Returns

	The detected project schema.

	Return type

	ProjectSchema

	
doc

	Get document associated with this project.

Alias for document().

	Returns

	The project document.

	Return type

	BufferedJSONAttrDict

	
document

	Get document associated with this project.

	Returns

	The project document.

	Return type

	BufferedJSONAttrDict

	
dump_statepoints(statepoints)

	Dump the state points and associated job ids.

Equivalent to:

{project.open_job(sp).id: sp for sp in statepoints}

	Parameters

	statepoints (iterable) – A list of state points.

	Returns

	A mapping, where the key is the job id and the value is the
state point.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
export_to(target, path=None, copytree=None)

	Export all jobs to a target location, such as a directory or a (compressed) archive file.

Use this function in combination with find_jobs() to export only a
select number of jobs, for example:

project.find_jobs({'foo': 0}).export_to('foo_0.tar')

The path argument enables users to control how exactly the exported data space is to be
expanded. By default, the path-function will be based on the implicit schema of the
exported jobs. For example, exporting jobs that all differ by a state point key foo with
project.export_to('data/'), the exported directory structure could look like this:

data/foo/0
data/foo/1
...

That would be equivalent to specifying path=lambda job: os.path.join('foo', job.sp.foo).

Instead of a function, we can also provide a string, where fields for state point keys
are automatically formatted. For example, the following two path arguments are equivalent:
“foo/{foo}” and “foo/{job.sp.foo}”.

Any attribute of job can be used as a field here, so job.doc.bar,
job.id, and job.ws can also be used as path fields.

A special {{auto}} field allows us to expand the path automatically with state point
keys that have not been specified explicitly. So, for example, one can provide
path="foo/{foo}/{{auto}}" to specify that the path shall begin with foo/{foo}/,
but is then automatically expanded with all other state point key-value pairs. How
key-value pairs are concatenated can be controlled via the format-specifier, so for
example, path="{{auto:_}}" will generate a structure such as

data/foo_0
data/foo_1
...

Finally, providing path=False is equivalent to path="{job.id}".

See also

	import_from() :

	Previously exported or non-signac data spaces can be imported.

	signac export :

	See signac export for the command line equivalent.

	Parameters

	
	target – A path to a directory to export to. The target can not already exist.
Besides directories, possible targets are tar files (.tar), gzipped tar files
(.tar.gz), zip files (.zip), bzip2-compressed files (.bz2),
and xz-compressed files (.xz).

	path – The path (function) used to structure the exported data space.
This argument must either be a callable which returns a path (str) as a function
of job, a string where fields are replaced using the job-state point dictionary,
or False, which means that we just use the job-id as path.
Defaults to the equivalent of {{auto}}.

	copytree – The function used for the actual copying of directory tree
structures. Defaults to shutil.copytree() [https://docs.python.org/3/library/shutil.html#shutil.copytree].
Can only be used when the target is a directory.

	Returns

	A dict that maps the source directory paths, to the target
directory paths.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
find_job_ids(filter=None, doc_filter=None, index=None)

	Find the job_ids of all jobs matching the filters.

The optional filter arguments must be a Mapping of key-value
pairs and JSON serializable.

Note

Providing a pre-calculated index may vastly increase the
performance of this function.

	Parameters

	
	filter (Mapping) – A mapping of key-value pairs that all indexed job state points
are compared against (Default value = None).

	doc_filter (Mapping) – A mapping of key-value pairs that all indexed job documents are
compared against (Default value = None).

	index – A document index. If not provided, an index will be computed
(Default value = None).

	Returns

	

	Return type

	The ids of all indexed jobs matching both filters.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the filters are not JSON serializable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the filters are invalid.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the filters are not supported by the index.

Deprecated since version 1.3: This will be removed in 2.0. Use find_jobs() instead, then access ids with job.id.Replicate the original behavior with [job.id for job in project.find_jobs()]

	
find_jobs(filter=None, doc_filter=None)

	Find all jobs in the project’s workspace.

The optional filter arguments must be a Mapping of key-value pairs and
JSON serializable. The filter argument is used to search against job
state points, whereas the doc_filter argument compares against job
document keys.

See signac find for the command line equivalent.

	Parameters

	
	filter (Mapping) – A mapping of key-value pairs that all indexed job state points are
compared against (Default value = None).

	doc_filter (Mapping) – A mapping of key-value pairs that all indexed job documents are
compared against (Default value = None).

	Returns

	JobsCursor of jobs matching the provided filter(s).

	Return type

	JobsCursor

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the filters are not JSON serializable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the filters are invalid.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the filters are not supported by the index.

	
fn(filename)

	Prepend a filename with the project’s root directory path.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file.

	Returns

	The joined path of project root directory and filename.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_id()

	Get the project identifier.

	Returns

	The project id.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Deprecated since version 1.3: This will be removed in 2.0. Use project.id instead.

	
classmethod get_job(root=None)

	Find a Job in or above the current working directory (or provided path).

	Parameters

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The job root directory.
If no root directory is given, the current working directory is
assumed to be the job directory (Default value = None).

	Returns

	The job instance.

	Return type

	Job

	Raises

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – When job cannot be found.

	
classmethod get_project(root=None, search=True, **kwargs)

	Find a project configuration and return the associated project.

	Parameters

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The starting point to search for a project, defaults to the
current working directory.

	search (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, search for project configurations inside and above
the specified root directory, otherwise only return projects
with a root directory identical to the specified root argument
(Default value = True).

	**kwargs – Optional keyword arguments that are forwarded to the
Project class constructor.

	Returns

	An instance of Project.

	Return type

	Project

	Raises

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – When project configuration cannot be found.

	
get_statepoint(jobid, fn=None)

	Get the state point associated with a job id.

The state point is retrieved from the internal cache, from
the workspace or from a state points file.

	Parameters

	
	jobid (str [https://docs.python.org/3/library/stdtypes.html#str]) – A job id to get the state point for.

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the file containing the state points, defaults
to FN_STATEPOINTS.

	Returns

	The state point corresponding to jobid.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the state point associated with jobid could not be found.

	signac.errors.JobsCorruptedError – If the state point manifest file corresponding to jobid is
inaccessible or corrupted.

Deprecated since version 1.3: This will be removed in 2.0. Use open_job(id=jobid).statepoint() function instead.

	
groupby(key=None, default=None)

	Group jobs according to one or more state point parameters.

This method can be called on any JobsCursor such as
the one returned by find_jobs() or by iterating over a
project.

Examples

Group jobs by state point parameter 'a'.
for key, group in project.groupby('a'):
 print(key, list(group))

Group jobs by document value 'a'.
for key, group in project.groupby('doc.a'):
 print(key, list(group))

Group jobs by jobs.sp['a'] and job.document['b']
for key, group in project.groupby('a', 'doc.b'):
 print(key, list(group))

Find jobs where job.sp['a'] is 1 and group them
by job.sp['b'] and job.sp['c'].
for key, group in project.find_jobs({'a': 1}).groupby(('b', 'c')):
 print(key, list(group))

Group by job.sp['d'] and job.document['count'] using a lambda.
for key, group in project.groupby(
 lambda job: (job.sp['d'], job.document['count'])
):
 print(key, list(group))

If key is None, jobs are grouped by id, placing one job into each group.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], iterable, or callable) – The state point grouping parameter(s) passed as a string,
iterable of strings, or a callable that will be passed one
argument, the job (Default value = None).

	default – A default value to be used when a given state point key is not
present. The value must be sortable and is only used if not None
(Default value = None).

	Returns

	
	key (str) – Grouped key.

	group (iterable of Jobs) – Iterable of Job instances matching this group key.

	
groupbydoc(key=None, default=None)

	Group jobs according to one or more document values.

This method can be called on any JobsCursor such as
the one returned by find_jobs() or by iterating over a
project.

Examples

Group jobs by document value 'a'.
for key, group in project.groupbydoc('a'):
 print(key, list(group))

Find jobs where job.sp['a'] is 1 and group them
by job.document['b'] and job.document['c'].
for key, group in project.find_jobs({'a': 1}).groupbydoc(('b', 'c')):
 print(key, list(group))

Group by whether 'd' is a field in the job.document using a lambda.
for key, group in project.groupbydoc(lambda doc: 'd' in doc):
 print(key, list(group))

If key is None, jobs are grouped by id, placing one job into each group.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], iterable, or callable) – The document grouping parameter(s) passed as a string, iterable
of strings, or a callable that will be passed one argument,
document (Default value = None).

	default – A default value to be used when a given document key is not
present. The value must be sortable and is only used if not None
(Default value = None).

Deprecated since version 1.7: This will be removed in 2.0. Use groupby with a ‘doc.’ filter instead, see https://docs.signac.io/en/latest/query.html#query-namespaces.

	
id

	Get the project identifier.

	Returns

	The project id.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
import_from(origin=None, schema=None, sync=None, copytree=None)

	Import the data space located at origin into this project.

This function will walk through the data space located at origin and will try to identify
data space paths that can be imported as a job workspace into this project.

The schema argument expects a function that takes a path argument and returns a state
point dictionary. A default function is used when no argument is provided.
The default schema function will simply look for state point manifest files–usually named
signac_statepoint.json–and then import all data located within that path into the job
workspace corresponding to the state point specified in the manifest file.

Alternatively the schema argument may be a string, that is converted into a schema function,
for example: Providing foo/{foo:int} as schema argument means that all directories under
foo/ will be imported and their names will be interpreted as the value for foo
within the state point.

Tip

Use copytree=os.replace or copytree=shutil.move to move dataspaces on import
instead of copying them.

Warning: Imports can fail due to conflicts. Moving data instead of copying may
therefore lead to inconsistent states and users are advised to apply caution.

See also

export_to() : Export the project data space.

	signac import :

	See signac import for the command line equivalent.

	Parameters

	
	origin – The path to the data space origin, which is to be imported. This may be a path to
a directory, a zip file, or a tarball archive (Default value = None).

	schema – An optional schema function, which is either a string or a function that accepts a
path as its first and only argument and returns the corresponding state point as dict.
(Default value = None).

	sync – If True, the project will be synchronized with the imported data space. If a
dict of keyword arguments is provided, the arguments will be used for
sync() (Default value = None).

	copytree – Specify which exact function to use for the actual copytree operation.
Defaults to shutil.copytree() [https://docs.python.org/3/library/shutil.html#shutil.copytree].

	Returns

	A dict that maps the source directory paths to the target directory paths.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
index(formats=None, depth=0, skip_errors=False, include_job_document=True)

	Generate an index of the project’s workspace.

This generator function indexes every file in the project’s
workspace until the specified depth.
The job document if it exists, is always indexed, other
files need to be specified with the formats argument.

See signac project -i for the command line equivalent.

for doc in project.index({r'.*\.txt', 'TextFile'}):
 print(doc)

	Parameters

	
	formats (str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The format definitions as a pattern string (e.g. r'.*\.txt')
or a mapping from pattern strings to formats (e.g.
'TextFile'). If None, only the job document is indexed
(Default value = None).

	depth (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the crawling depth. A value of 0 means no limit
(Default value = 0).

	skip_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – Skip all errors which occur during indexing. This is useful when
trying to repair a broken workspace (Default value = False).

	include_job_document (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the contents of job documents (Default value = True).

	Yields

	dict – Index document.

	
classmethod init_project(name, root=None, workspace=None, make_dir=True)

	Initialize a project with the given name.

It is safe to call this function multiple times with the same
arguments. However, a RuntimeError is raised if an existing project
configuration would conflict with the provided initialization
parameters.

See signac init for the command line equivalent.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the project to initialize.

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The root directory for the project.
Defaults to the current working directory.

	workspace (str [https://docs.python.org/3/library/stdtypes.html#str]) – The workspace directory for the project.
Defaults to a subdirectory workspace in the project root.

	make_dir (bool [https://docs.python.org/3/library/functions.html#bool]) – Create the project root directory if it does not exist yet
(Default value = True).

	Returns

	Initialized project, an instance of Project.

	Return type

	Project

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the project root path already contains a conflicting project
configuration.

	
isfile(filename)

	Check if a filename exists in the project’s root directory.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file.

	Returns

	True if filename exists in the project’s root directory.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
min_len_unique_id()

	Determine the minimum length required for a job id to be unique.

This method’s runtime scales with the number of jobs in the
workspace.

	Returns

	Minimum string length of a unique job identifier.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_jobs()

	Return the number of initialized jobs.

	Returns

	Count of initialized jobs.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
open_job(statepoint=None, id=None)

	Get a job handle associated with a state point.

This method returns the job instance associated with
the given state point or job id.
Opening a job by a valid state point never fails.
Opening a job by id requires a lookup of the state point
from the job id, which may fail if the job was not
previously initialized.

	Parameters

	
	statepoint (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The job’s unique set of state point parameters (Default value = None).

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The job id (Default value = None).

	Returns

	The job instance.

	Return type

	Job

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the attempt to open the job by id fails.

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – If the attempt to open the job by an abbreviated id returns more
than one match.

	
read_statepoints(fn=None)

	Read all state points from a file.

See also

	dump_statepoints()

	Dump the state points and associated job ids.

	write_statepoints()

	Dump state points to a file.

	Parameters

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the file containing the state points,
defaults to FN_STATEPOINTS.

	Returns

	State points.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
repair(fn_statepoints=None, index=None, job_ids=None)

	Attempt to repair the workspace after it got corrupted.

This method will attempt to repair lost or corrupted job state point
manifest files using a state points file or a document index or both.

	Parameters

	
	fn_statepoints (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the file containing the state points, defaults
to FN_STATEPOINTS.

	index – A document index (Default value = None).

	job_ids – An iterable of job ids that should get repaired. Defaults to all jobs.

	Raises

	signac.errors.JobsCorruptedError – When one or more corrupted job could not be repaired.

	
reset_statepoint(job, new_statepoint)

	Overwrite the state point of this job while preserving job data.

This method will change the job id if the state point has been altered.

Danger

Use this function with caution! Resetting a job’s state point,
may sometimes be necessary, but can possibly lead to incoherent
data spaces.

	Parameters

	
	job (Job) – The job that should be reset to a new state point.

	new_statepoint (mapping) – The job’s new state point.

	Raises

	
	DestinationExistsError – If a job associated with the new state point is already initialized.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the move failed due to an unknown system related error.

Deprecated since version 1.3: This will be removed in 2.0. Use job.reset_statepoint() instead.

	
root_directory()

	Return the project’s root directory.

	Returns

	Path of project directory.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
stores

	Get HDF5-stores associated with this project.

Use this property to access an HDF5 file within the project’s root
directory using the H5Store dict-like interface.

This is an example for accessing an HDF5 file called 'my_data.h5'
within the project’s root directory:

project.stores['my_data']['array'] = np.random((32, 4))

This is equivalent to:

H5Store(project.fn('my_data.h5'))['array'] = np.random((32, 4))

Both the project.stores and the H5Store itself support attribute
access. The above example could therefore also be expressed as:

project.stores.my_data.array = np.random((32, 4))

	Returns

	The HDF5-Store manager for this project.

	Return type

	H5StoreManager

	
sync(other, strategy=None, exclude=None, doc_sync=None, selection=None, **kwargs)

	Synchronize this project with the other project.

Try to clone all jobs from the other project to this project.
If a job is already part of this project, try to synchronize the job
using the optionally specified strategies.

See signac sync for the command line equivalent.

	Parameters

	
	other (Project) – The other project to synchronize this project with.

	strategy – A file synchronization strategy (Default value = None).

	exclude – Files with names matching the given pattern will be excluded
from the synchronization (Default value = None).

	doc_sync – The function applied for synchronizing documents (Default value = None).

	selection – Only sync the given jobs (Default value = None).

	**kwargs – This method also accepts the same keyword arguments as the
sync_projects() function.

	Raises

	
	DocumentSyncConflict – If there are conflicting keys within the project or job documents that cannot
be resolved with the given strategy or if there is no strategy provided.

	FileSyncConflict – If there are differing files that cannot be resolved with the given strategy
or if no strategy is provided.

	SchemaSyncConflict – In case that the check_schema argument is True and the detected state point
schema of this and the other project differ.

	
temporary_project(name=None, dir=None)

	Context manager for the initialization of a temporary project.

The temporary project is by default created within the root project’s
workspace to ensure that they share the same file system. This is an example
for how this method can be used for the import and synchronization of
external data spaces.

with project.temporary_project() as tmp_project:
 tmp_project.import_from('/data')
 project.sync(tmp_project)

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional name for the temporary project.
Defaults to a unique random string.

	dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optionally specify where the temporary project root directory is to be
created. Defaults to the project’s workspace directory.

	Returns

	An instance of Project.

	Return type

	Project

	
to_dataframe(*args, **kwargs)

	Export the project metadata to a pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

The arguments to this function are forwarded to
to_dataframe().

	Parameters

	
	*args – Forwarded to to_dataframe().

	**kwargs – Forwarded to to_dataframe().

	Returns

	

	Return type

	DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
update_cache()

	Update the persistent state point cache.

This function updates a persistent state point cache, which
is stored in the project root directory. Most data space operations,
including iteration and filtering or selection are expected
to be significantly faster after calling this function, especially
for large data spaces.

	
update_statepoint(job, update, overwrite=False)

	Change the state point of this job while preserving job data.

By default, this method will not change existing parameters of the
state point of the job.

This method will change the job id if the state point has been altered.

Warning

While appending to a job’s state point is generally safe, modifying
existing parameters may lead to data inconsistency. Use the
overwrite argument with caution!

	Parameters

	
	job (Job) – The job whose state point shall be updated.

	update (mapping) – A mapping used for the state point update.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, an error will be raised if the update modifies the values
of existing keys in the state point. If True, any existing keys will
be overwritten in the same way as dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update]. Use with
caution! (Default value = False).

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the update contains keys which are already part of the job’s
state point and overwrite is False.

	DestinationExistsError – If a job associated with the new state point is already initialized.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the move failed due to an unknown system related error.

Deprecated since version 1.3: This will be removed in 2.0. Use job.update_statepoint() instead.

	
workspace()

	Return the project’s workspace directory.

The workspace defaults to project_root/workspace.
Configure this directory with the ‘workspace_dir’
attribute.
If the specified directory is a relative path,
the absolute path is relative from the project’s
root directory.

Note

The configuration will respect environment variables,
such as $HOME.

See signac project -w for the command line equivalent.

	Returns

	Path of workspace directory.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
write_statepoints(statepoints=None, fn=None, indent=2)

	Dump state points to a file.

If the file already contains state points, all new state points
will be appended, while the old ones are preserved.

See also

	dump_statepoints()

	Dump the state points and associated job ids.

	Parameters

	
	statepoints (iterable) – A list of state points, defaults to all state points which are
defined in the workspace.

	fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the file containing the state points, defaults to
FN_STATEPOINTS.

	indent (int [https://docs.python.org/3/library/functions.html#int]) – Specify the indentation of the JSON file (Default value = 2).

The JobsCursor class

Attributes

	JobsCursor.export_to(target[, path, copytree])

	Export all jobs to a target location, such as a directory or a (zipped) archive file.

	JobsCursor.groupby([key, default])

	Group jobs according to one or more state point parameters.

	JobsCursor.groupbydoc([key, default])

	Group jobs according to one or more document values.

	JobsCursor.to_dataframe([sp_prefix, …])

	Convert the selection of jobs to a pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	
class signac.contrib.project.JobsCursor(project, filter=None, doc_filter=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An iterator over a search query result.

Application developers should not directly instantiate this class, but
use find_jobs() instead.

Enables simple iteration and grouping operations.

	Parameters

	
	project (Project) – Project handle.

	filter (Mapping) – A mapping of key-value pairs that all indexed job state points are
compared against (Default value = None).

Notes

Iteration is performed by acquiring job ids from the project using
Project._find_job_ids(). When no filter (filter = None) is
provided, that method can take a much faster execution path, so not passing
a filter (or passing None explicitly) to this constructor is strongly
recommended over passing an empty filter (filter = {}) when iterating
over the entire data space.

	
export_to(target, path=None, copytree=None)

	Export all jobs to a target location, such as a directory or a (zipped) archive file.

See also

export_to() : For full details on how to use this function.

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to a directory or archive file to export to.

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or callable) – The path (function) used to structure the exported data space
(Default value = None).

	copytree (callable) – The function used for copying of directory tree structures.
Defaults to shutil.copytree() [https://docs.python.org/3/library/shutil.html#shutil.copytree]. Can only be used when the
target is a directory (Default value = None).

	Returns

	A dictionary that maps the source directory paths to the target
directory paths.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
groupby(key=None, default=None)

	Group jobs according to one or more state point parameters.

This method can be called on any JobsCursor such as
the one returned by find_jobs() or by iterating over a
project.

Examples

Group jobs by state point parameter 'a'.
for key, group in project.groupby('a'):
 print(key, list(group))

Group jobs by document value 'a'.
for key, group in project.groupby('doc.a'):
 print(key, list(group))

Group jobs by jobs.sp['a'] and job.document['b']
for key, group in project.groupby('a', 'doc.b'):
 print(key, list(group))

Find jobs where job.sp['a'] is 1 and group them
by job.sp['b'] and job.sp['c'].
for key, group in project.find_jobs({'a': 1}).groupby(('b', 'c')):
 print(key, list(group))

Group by job.sp['d'] and job.document['count'] using a lambda.
for key, group in project.groupby(
 lambda job: (job.sp['d'], job.document['count'])
):
 print(key, list(group))

If key is None, jobs are grouped by id, placing one job into each group.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], iterable, or callable) – The state point grouping parameter(s) passed as a string,
iterable of strings, or a callable that will be passed one
argument, the job (Default value = None).

	default – A default value to be used when a given state point key is not
present. The value must be sortable and is only used if not None
(Default value = None).

	
groupbydoc(key=None, default=None)

	Group jobs according to one or more document values.

This method can be called on any JobsCursor such as
the one returned by find_jobs() or by iterating over a
project.

Examples

Group jobs by document value 'a'.
for key, group in project.groupbydoc('a'):
 print(key, list(group))

Find jobs where job.sp['a'] is 1 and group them
by job.document['b'] and job.document['c'].
for key, group in project.find_jobs({'a': 1}).groupbydoc(('b', 'c')):
 print(key, list(group))

Group by whether 'd' is a field in the job.document using a lambda.
for key, group in project.groupbydoc(lambda doc: 'd' in doc):
 print(key, list(group))

If key is None, jobs are grouped by id, placing one job into each group.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str], iterable, or callable) – The document grouping parameter(s) passed as a string, iterable
of strings, or a callable that will be passed one argument,
document (Default value = None).

	default – A default value to be used when a given document key is not
present. The value must be sortable and is only used if not None
(Default value = None).

Deprecated since version 1.7: This will be removed in 2.0. Use groupby with a ‘doc.’ filter instead, see https://docs.signac.io/en/latest/query.html#query-namespaces.

	
next()

	Return the next element.

This function is deprecated. Users should use next(iter(..)) instead.
.. deprecated:: 0.9.6

	
to_dataframe(sp_prefix='sp.', doc_prefix='doc.', usecols=None, flatten=False)

	Convert the selection of jobs to a pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame].

This function exports the job metadata to a
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]. All state point and document keys are
prefixed by default to be able to distinguish them.

	Parameters

	
	sp_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Prefix state point keys with the given string. Defaults to “sp.”.

	doc_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Prefix document keys with the given string. Defaults to “doc.”.

	usecols (list-like or callable, optional) – Used to select a subset of columns. If list-like, must contain
strings corresponding to the column names that should be included.
For example, ['sp.a', 'doc.notes']. If callable, the column
will be included if the function called on the column name returns
True. For example, lambda x: 'sp.' in x. Defaults to None,
which uses all columns from the state point and document. Note
that this filter is applied after the doc and sp prefixes are
added to the column names.

	flatten (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether nested state points or document keys should be flattened.
If True, {'a': {'b': 'c'}} becomes a column named a.b with
value c. If False, it becomes a column named a with value
{'b': 'c'}. Defaults to False.

	Returns

	A pandas DataFrame with all job metadata.

	Return type

	DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

The Job class

Attributes

	Job.clear()

	Remove all job data, but not the job itself.

	Job.close()

	Close the job and switch to the previous working directory.

	Job.data

	Get data associated with this job.

	Job.doc

	Alias for document.

	Job.document

	Get document associated with this job.

	Job.fn(filename)

	Prepend a filename with the job’s workspace directory path.

	Job.get_id()

	Job’s state point unique identifier.

	Job.id

	Get the unique identifier for the job’s state point.

	Job.init([force])

	Initialize the job’s workspace directory.

	Job.isfile(filename)

	Return True if file exists in the job’s workspace.

	Job.move(project)

	Move this job to project.

	Job.open()

	Enter the job’s workspace directory.

	Job.remove()

	Remove the job’s workspace including the job document.

	Job.reset()

	Remove all job data, but not the job itself.

	Job.reset_statepoint(new_statepoint)

	Overwrite the state point of this job while preserving job data.

	Job.sp

	Alias for statepoint.

	Job.statepoint

	Get the job’s state point.

	Job.stores

	Get HDF5 stores associated with this job.

	Job.sync(other[, strategy, exclude, doc_sync])

	Perform a one-way synchronization of this job with the other job.

	Job.update_statepoint(update[, overwrite])

	Change the state point of this job while preserving job data.

	Job.workspace()

	Return the job’s unique workspace directory.

	Job.ws

	Alias for workspace().

	
class signac.contrib.job.Job(project, statepoint=None, _id=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The job instance is a handle to the data of a unique state point.

Application developers should not directly instantiate this class, but
use open_job() instead.

Jobs can be opened by statepoint or _id. If both values are
provided, it is the user’s responsibility to ensure that the values
correspond.

	Parameters

	
	project (Project) – Project handle.

	statepoint (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – State point for the job. (Default value = None)

	_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The job identifier. (Default value = None)

	
FN_DOCUMENT = 'signac_job_document.json'

	The job’s document filename.

	
FN_MANIFEST = 'signac_statepoint.json'

	The job’s state point filename.

The job state point is a human-readable file containing the job’s state
point that is stored in each job’s workspace directory.

	
KEY_DATA = 'signac_data'

	The job’s datastore key.

	
clear()

	Remove all job data, but not the job itself.

This function will do nothing if the job was not previously
initialized.

See signac rm -c for the command line equivalent.

	
close()

	Close the job and switch to the previous working directory.

	
data

	Get data associated with this job.

This property should be used for large array-like data, which can’t be
stored efficiently in the job document. For examples and usage, see
Job Data Storage [https://docs.signac.io/en/latest/jobs.html#job-data-storage].

Equivalent to:

return job.stores['signac_data']

	Returns

	An HDF5-backed datastore.

	Return type

	H5Store

	
doc

	Alias for document.

Warning

Even deep copies of doc will modify the same file, so
changes will still effectively be persisted between deep copies.
If you need a deep copy that will not modify the underlying
persistent JSON file, use the call operator to get an equivalent
plain dictionary: job.doc().

See signac document for the command line equivalent.

	Returns

	The job document handle.

	Return type

	JSONDict

	
document

	Get document associated with this job.

Warning

Even deep copies of document will modify the same file,
so changes will still effectively be persisted between deep copies.
If you need a deep copy that will not modify the underlying
persistent JSON file, use the call operator to get an equivalent
plain dictionary: job.document().
For more information, see
JSONDict.

See signac document for the command line equivalent.

	Returns

	The job document handle.

	Return type

	JSONDict

	
fn(filename)

	Prepend a filename with the job’s workspace directory path.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file.

	Returns

	The full workspace path of the file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_id()

	Job’s state point unique identifier.

	Returns

	The job id.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Deprecated since version 1.3: This will be removed in 2.0. Use job.id instead.

	
id

	Get the unique identifier for the job’s state point.

	Returns

	The job id.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
init(force=False)

	Initialize the job’s workspace directory.

This function will do nothing if the directory and the job state point
already exist and the state point is valid.

Returns the calling job.

See signac job -c for the command line equivalent.

	Parameters

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – Overwrite any existing state point files, e.g., to repair them if
they got corrupted (Default value = False).

	Returns

	The job handle.

	Return type

	Job

	Raises

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the workspace directory cannot be created or any other I/O error
occurs when attempting to save the state point file.

	JobsCorruptedError – If the job state point on disk is corrupted.

	
isfile(filename)

	Return True if file exists in the job’s workspace.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file.

	Returns

	True if file with filename exists in workspace.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
move(project)

	Move this job to project.

This function will attempt to move this instance of job from
its original project to a different project.

See signac move for the command line equivalent.

	Parameters

	project (Project) – The project to move this job to.

	
open()

	Enter the job’s workspace directory.

You can use the Job class as context manager:

with project.open_job(my_statepoint) as job:
 # manipulate your job data

Opening the context will switch into the job’s workspace,
leaving it will switch back to the previous working directory.

	
remove()

	Remove the job’s workspace including the job document.

This function will do nothing if the workspace directory
does not exist.

See signac rm for the command line equivalent.

	
reset()

	Remove all job data, but not the job itself.

This function will initialize the job if it was not previously
initialized.

	
reset_statepoint(new_statepoint)

	Overwrite the state point of this job while preserving job data.

This method will change the job id if the state point has been altered.

For more information, see
Modifying the State Point [https://docs.signac.io/en/latest/jobs.html#modifying-the-state-point].

Danger

Use this function with caution! Resetting a job’s state point
may sometimes be necessary, but can possibly lead to incoherent
data spaces.

	Parameters

	new_statepoint (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The job’s new state point.

	
sp

	Alias for statepoint.

	
statepoint

	Get the job’s state point.

Warning

The state point object behaves like a dictionary in most cases,
but because it persists changes to the filesystem, making a copy
requires explicitly converting it to a dict. If you need a
modifiable copy that will not modify the underlying JSON file,
you can access a dict copy of the state point by calling it, e.g.
sp_dict = job.statepoint() instead of sp = job.statepoint.
For more information, see
JSONAttrDict.

See signac statepoint for the command line equivalent.

	Returns

	Returns the job’s state point.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
stores

	Get HDF5 stores associated with this job.

Use this property to access an HDF5 file within the job’s workspace
directory using the H5Store dict-like interface.

This is an example for accessing an HDF5 file called ‘my_data.h5’ within
the job’s workspace:

job.stores['my_data']['array'] = np.random((32, 4))

This is equivalent to:

H5Store(job.fn('my_data.h5'))['array'] = np.random((32, 4))

Both the stores and the H5Store itself support attribute
access. The above example could therefore also be expressed as:

job.stores.my_data.array = np.random((32, 4))

	Returns

	The HDF5-Store manager for this job.

	Return type

	H5StoreManager

	
sync(other, strategy=None, exclude=None, doc_sync=None, **kwargs)

	Perform a one-way synchronization of this job with the other job.

By default, this method will synchronize all files and document data with
the other job to this job until a synchronization conflict occurs. There
are two different kinds of synchronization conflicts:

	The two jobs have files with the same, but different content.

	The two jobs have documents that share keys, but those keys are
associated with different values.

A file conflict can be resolved by providing a ‘FileSync’ strategy or by
excluding files from the synchronization. An unresolvable conflict is indicated with
the raise of a FileSyncConflict exception.

A document synchronization conflict can be resolved by providing a doc_sync function
that takes the source and the destination document as first and second argument.

	Parameters

	
	other (Job) – The other job to synchronize from.

	strategy – A synchronization strategy for file conflicts. If no strategy is provided, a
SyncConflict exception will be raised upon conflict
(Default value = None).

	exclude (str [https://docs.python.org/3/library/stdtypes.html#str]) – An filename exclude pattern. All files matching this pattern will be
excluded from synchronization (Default value = None).

	doc_sync – A synchronization strategy for document keys. If this argument is None, by default
no keys will be synchronized upon conflict.

	dry_run – If True, do not actually perform the synchronization.

	**kwargs – Extra keyword arguments will be forward to the sync_jobs()
function which actually excutes the synchronization operation.

	Raises

	FileSyncConflict – In case that a file synchronization results in a conflict.

	
update_statepoint(update, overwrite=False)

	Change the state point of this job while preserving job data.

By default, this method will not change existing parameters of the
state point of the job.

This method will change the job id if the state point has been altered.

For more information, see
Modifying the State Point [https://docs.signac.io/en/latest/jobs.html#modifying-the-state-point].

Warning

While appending to a job’s state point is generally safe, modifying
existing parameters may lead to data inconsistency. Use the
overwrite argument with caution!

	Parameters

	
	update (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping used for the state point update.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, an error will be raised if the update modifies the values
of existing keys in the state point. If True, any existing keys will
be overwritten in the same way as dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update]. Use with
caution! (Default value = False).

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the update contains keys which are already part of the job’s
state point and overwrite is False.

	DestinationExistsError – If a job associated with the new state point is already initialized.

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the move failed due to an unknown system related error.

	
workspace()

	Return the job’s unique workspace directory.

See signac job -w for the command line equivalent.

	Returns

	The path to the job’s workspace directory.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ws

	Alias for workspace().

The Collection

	
class signac.Collection(docs=None, primary_key='_id', compresslevel=0, _trust=False)

	A collection of documents.

The Collection class manages a collection of documents in memory
or in a file on disk. A document is defined as a dictionary mapping
of key-value pairs.

An instance of collection may be used to manage and search documents.
For example, given a collection with member data, where each document
contains a name entry and an age entry, we can find the name of
all members that are at age 32 like this:

members = [
 {'name': 'John', 'age': 32},
 {'name': 'Alice', 'age': 28},
 {'name': 'Kevin', 'age': 32},
 # ...
]

member_collection = Collection(members)
for doc in member_collection.find({'age': 32}):
 print(doc['name'])

To iterate over all documents in the collection, use:

for doc in collection:
 print(doc)

By default a collection object will reside in memory. However, it is
possible to manage a collection associated to a file on disk. To open
a collection which is associated with a file on disk, use the
Collection.open() class method:

with Collection.open('collection.txt') as collection:
 for doc in collection.find({'age': 32}):
 print(doc)

The collection file is by default opened in a+ mode, which means it can
be read from and written to and will be created if it does not exist yet.

	Parameters

	
	docs (iterable) – Initialize the collection with these documents.

	primary_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the key which serves as the primary
index of the collection. Selecting documents by primary key has
time complexity of O(N) in the worst case and O(1) on average.
All documents must have a primary key value. The default primary
key is _id.

	compresslevel (int [https://docs.python.org/3/library/functions.html#int]) – The level of compression to use. Any positive value
implies compression and is used by the underlying gzip implementation.
Default value is 0 (no compression).

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When first argument is a string.

	
clear()

	Remove all documents from the collection.

	
close()

	Close this collection instance.

In case that the collection is associated with a file-object,
all changes are flushed to the file and the file is closed.

It is not possible to re-open the same collection instance
after closing it.

	
delete_many(filter)

	Delete all documents that match the filter.

	Parameters

	filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A document that should be deleted must match this filter.

	
delete_one(filter)

	Delete one document that matches the filter.

	Parameters

	filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The document that should be deleted must match this filter.

	
dump(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Dump the collection in JSON-encoding to file.

The file argument defaults to sys.stdout, which means
the encoded blob will be printed to screen in case
that no file argument is provided.

For example, to dump to a file on disk, one could write:

with open('my_collection.txt', 'w') as file:
 collection.dump(file)

	Parameters

	file – The file to write the encoded blob to (Default value = sys.stdout).

	
find(filter=None, limit=0)

	Find all documents matching filter, but not more than limit.

This function searches the collection for all documents that match
the given filter and returns a result vector. For example:

for doc in collection.find(my_filter):
 print(doc)

Nested values should be searched using the . operator, for example:

docs = collection.find({'nested.value': 42})

will return documents with a nested structure: {'nested': {'value': 42}}.

The result of find() can be stored and iterated over multiple times.
In addition, the result vector can be queried for its size:

docs = collection.find(my_filter)

print(len(docs)) # the number of documents matching

for doc in docs: # iterate over the result vector
 pass

Arithmetic Operators

	$eq: equal

	$ne: not equal

	$gt: greater than

	$gte: greater or equal than

	$lt: less than

	$lte: less or equal than

project.find({"a": {"$lt": 5})

Matches all docs with a less than 5.

Logical Operators

That includes $and and $or; both expect a list of expressions.

project.find({"$or": [{"a": 4}, {"b": {"$gt": 3}}]})

Matches all docs, where a is 4 or b is greater than 3.

Exists operator

Determines whether a specific key exists, or not, e.g.:

project.find({"a": {"$exists": True}})

Array operator

To determine whether specific elements are in ($in), or not in ($nin)
an array, e.g.:

project.find({"a": {"$in": [0, 1, 2]}})

Matches all docs, where a is either 0, 1, or 2. Usage of $nin is equivalent.

Regular expression operator

Allows the “on-the-fly” evaluation of regular expressoions, e.g.:

project.find({"protocol": {"$regex": "foo"}})

Will match all docs with a protocol that contains the term ‘foo’.

$type operator

Matches when a value is of specific type, e.g.:

project.find({"protocol": {"$type": str}})

Finds all docs, where the value of protocol is of type str.
Other types that can be checked are: int, float, bool, list, and null.

$where operator

Matches an arbitrary python expression, e.g.:

project.find({"foo": {"$where": "lambda x: x.startswith('bar')"}})

Matches all docs, where the value for foo starts with the word ‘bar’.

	Parameters

	
	filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – All documents must match the given filter (Default value = None).

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Do not return more than limit number of documents.
A limit value of 0 (the default) means no limit.

	Returns

	A result object that iterates over all matching documents.

	Return type

	_CollectionSearchResults

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case that the filter argument is invalid.

	
find_one(filter=None)

	Return one document that matches the filter or None.

doc = collection.find_one(my_filter)
if doc is None:
 print("No result found for filter", my_filter)
else:
 print("Doc matching filter:", my_filter, doc)

	Parameters

	filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The returned document must match the given filter (Default value = None).

	Returns

	A matching document or None.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case that the filter argument is invalid.

	
flush()

	Write all changes to the associated file.

If the collection instance is associated with a file-object,
calling the flush() method will write all changes
to this file.

This method is also called when the collection is explicitly or
implicitly closed.

	
ids

	Get an iterator over the primary key in the collection.

	Returns

	iterator over the primary key in the collection.

	Return type

	iterable

	
index(key, build=False)

	Get (and optionally build) the index for a given key.

An index allows to access documents by a specific key with
minimal time complexity, e.g.:

age_index = member_collection.index('age')
for _id in age_index[32]:
 print(member_collection[_id]['name'])

This means we can access documents by the ‘age’ key in O(1) time on
average in addition to the primary key. Using the find()
method will automatically build all required indexes for the particular
search.

Once an index has been built, it will be internally managed by the
class and updated with subsequent changes. An index returned by this
method is always current with the latest state of the collection.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The primary key of the requested index.

	build (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, build a non-existing index if necessary,
otherwise raise KeyError (Default value = False).

	Returns

	Index for the given key.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – In case the build is False and the index has not been built yet or
no index is present for the key.

	
insert_one(doc)

	Insert one document into the collection.

If the document does not have a value for the
collection’s primary key yet, it will be assigned one.

_id = collection.insert_one(doc)
assert _id in collection

Note

The document will be directly updated in case that
it has no primary key and must therefore be mutable!

	Parameters

	doc (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The document to be inserted.

	Returns

	The _id of the inserted documented.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
main()

	Start a command line interface for this Collection.

Use this function to interact with this instance of Collection
on the command line. For example, executing the following script:

find.py
with Collection.open('my_collection.txt') as c:
 c.main()

will enable us to search for documents on the command line like this:

$ python find.py '{"age": 32}'
{"name": "John", "age": 32}
{"name": "Kevin", "age": 32}

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When both –id or –indent are selected.

	
classmethod open(filename, mode=None, compresslevel=None)

	Open a collection associated with a file on disk.

Using this factory method will return a collection that is
associated with a collection file on disk. For example:

with Collection.open('collection.txt') as collection:
 for doc in collection:
 print(doc)

will read all documents from the collection.txt file or create
the file if it does not exist yet.

Modifications to the file will be written to the file when the
flush() method is called or the collection is
explicitly closed by calling the Collection.close() method or
implicitly by leaving the with-clause:

with Collection.open('collection.txt') as collection:
 collection.update(my_docs)
All changes to the collection have been written to collection.txt.

The open-modes work as expected, so for example to open a collection
file in read-only mode, use Collection.open('collection.txt', 'r').

Opening a gzip (*.gz) file also works as expected. Because gzip does not
support a combined read and write mode, mode=*+ is not available. Be
sure to open the file in read, write, or append mode as required. Due to
the manner in which gzip works, opening a file in mode=wt will
effectively erase the current file, so take care using mode=wt.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of file to read the documents from or create the file if it does not exist.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Open the file with mode (Default value = None).

	compresslevel (int [https://docs.python.org/3/library/functions.html#int]) – The level of compression to use. Any positive value
implies compression and is used by the underlying gzip implementation.
(Default value = None)

	Returns

	An instance of Collection.

	Return type

	Collection

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – File open-mode is not None for in-memory collection or
compressed collections are not opened in binary mode.

	
primary_key

	Get the name of the collection’s primary key (default=’_id’).

	
classmethod read_json(file=None)

	Construct an instance of Collection from a JSON file.

	Parameters

	file – The json file to read, provided as either a filename or a
file-like object (Default value = None).

	Returns

	A Collection containing the JSON file

	Return type

	Collection

	
replace_one(filter, replacement, upsert=False)

	Replace one document that matches the given filter.

The first document matching the filter will be replaced
by the given replacement document. If the upsert argument
is True, the replacement will be inserted in case that
no document matches the filter.

	Parameters

	
	filter (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A document that should be replaced must match this filter.

	replacement (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The replacement document.

	upsert (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, insert the replacement document in
the case that no document matches the filter (Default value = False).

	Returns

	The id of the replaced (or upserted) documented.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case that the filter argument is invalid.

	
to_json(file=None)

	Dump the collection as a JSON file.

This function returns the JSON-string directly if the
file argument is None.

	Parameters

	file – The filename or a file-like object to write the JSON string to (Default value = None).

	Returns

	JSON-string when file argument is not provided.

	Return type

	JSON

	
update(docs)

	Update the collection with these documents.

Any existing documents with the same primary key
will be replaced.

	Parameters

	docs (iterable) – A sequence of documents to be upserted into the collection.

The JSONDict

This class implements the interface for the job’s statepoint and document attributes, but can also be used stand-alone:

	
signac.JSONDict

	alias of signac.synced_collections.backends.collection_json.BufferedJSONAttrDict

The H5Store

This class implements the interface to the job’s data attribute, but can also be used stand-alone:

	
class signac.H5Store(filename, **kwargs)

	An HDF5-backed container for storing array-like and dictionary-like data.

The H5Store is a MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] and therefore
behaves similar to a dict [https://docs.python.org/3/library/stdtypes.html#dict], but all data is stored persistently in
the associated HDF5 file on disk.

Supported types include:

	built-in types (int, float, str, bool, NoneType, array)

	numpy arrays

	pandas data frames (requires pandas and pytables)

	mappings with values that are supported types

Values can be accessed as attributes (h5s.foo) or via key index
(h5s['foo']).

Examples

>>> from signac import H5Store
>>> with H5Store('file.h5') as h5s:
... h5s['foo'] = 'bar'
... assert 'foo' in h5s
... assert h5s.foo == 'bar'
... assert h5s['foo'] == 'bar'
>>>

The H5Store can be used as a context manager to ensure that the underlying
file is opened, however most built-in types (excluding arrays) can be read
and stored without the need to _explicitly_ open the file. To
access arrays (reading or writing), the file must always be opened!

To open a file in read-only mode, use the open() method with mode='r':

>>> with H5Store('file.h5').open(mode='r') as h5s:
... pass
>>>

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the underlying HDF5 file.

	**kwargs – Additional keyword arguments to be forwarded to the h5py.File
constructor. See the documentation for the h5py.File constructor [http://docs.h5py.org/en/latest/high/file.html#File] for more
information.

	
clear()

	Remove all data from this store.

Danger

All data will be removed, this action cannot be reversed!

	
close()

	Close the underlying HDF5 file.

	
file

	Access the underlying instance of h5py.File.

This property exposes the underlying h5py.File object enabling
use of functions such as create_dataset() or requires_dataset().

Note

The store must be open to access this property!

	Returns

	The h5py file-object that this store is operating on.

	Return type

	h5py.File

	Raises

	H5StoreClosedError – When the store is closed at the time of accessing this property.

	
filename

	Return the H5Store filename.

	
flush()

	Flush the underlying HDF5 file.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
mode

	Return the default opening mode of this H5Store.

	
open(mode=None)

	Open the underlying HDF5 file.

	Parameters

	mode – The file open mode to use. Defaults to ‘a’ (append).

	Returns

	This H5Store instance.

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(key, value)

	Set a value for a key if that key is not already set.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D's values

	

The H5StoreManager

This class implements the interface to the job’s stores attribute, but can also be used stand-alone:

	
class signac.H5StoreManager(prefix)

	Bases: signac.core.dict_manager.DictManager

Helper class to manage multiple instances of H5Store within a directory.

Example (assuming that the ‘stores/’ directory exists):

>>> stores = H5StoreManager('stores/')
>>> stores.data
<H5Store(filename=stores/data.h5)>
>>> stores.data.foo = True
>>> dict(stores.data)
{'foo': True}

	Parameters

	prefix – The directory prefix shared by all stores managed by this class.

	
cls

	alias of H5Store

	
keys()

	Return an iterable of keys.

	
prefix

	Return the prefix.

Top-level functions

The signac framework aids in the management of large and heterogeneous data spaces.

It provides a simple and robust data model to create a well-defined, indexable
storage layout for data and metadata. This makes it easier to operate on large
data spaces, streamlines post-processing and analysis, and makes data
collectively accessible.

	
signac.TemporaryProject(name=None, cls=None, **kwargs)

	Context manager for the generation of a temporary project.

This is a factory function that creates a Project within a temporary directory
and must be used as context manager, for example like this:

with TemporaryProject() as tmp_project:
 tmp_project.import_from('/data')

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional name for the temporary project.
Defaults to a unique random string.

	cls – The class of the temporary project.
Defaults to Project.

	**kwargs – Optional keyword arguments that are forwarded to the TemporaryDirectory class
constructor, which is used to create a temporary root directory.

	Yields

	Project – An instance of Project.

	
signac.get_project(root=None, search=True, **kwargs)

	Find a project configuration and return the associated project.

	Parameters

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The starting point to search for a project, defaults to the current
working directory.

	search (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, search for project configurations inside and above the
specified root directory, otherwise only return projects with a root
directory identical to the specified root argument (Default value =
True).

	**kwargs – Optional keyword arguments that are forwarded to
get_project().

	Returns

	An instance of Project.

	Return type

	Project

	Raises

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – If no project configuration can be found.

	
signac.init_project(name, root=None, workspace=None, make_dir=True)

	Initialize a project with the given name.

It is safe to call this function multiple times with the same arguments.
However, a RuntimeError is raised if an existing project configuration
would conflict with the provided initialization parameters.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the project to initialize.

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The root directory for the project.
Defaults to the current working directory.

	workspace (str [https://docs.python.org/3/library/stdtypes.html#str]) – The workspace directory for the project.
Defaults to a subdirectory workspace in the project root.

	make_dir (bool [https://docs.python.org/3/library/functions.html#bool]) – Create the project root directory, if it does not exist yet (Default
value = True).

	Returns

	The initialized project instance.

	Return type

	Project

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the project root path already contains a conflicting project
configuration.

	
signac.get_job(root=None)

	Find a Job in or above the current working directory (or provided path).

	Parameters

	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The job root directory.
If no root directory is given, the current working directory is
assumed to be within the current job workspace directory (Default value = None).

	Returns

	Job handle.

	Return type

	Job

	Raises

	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – If this job cannot be found.

Examples

When the current directory is a job workspace directory:

>>> signac.get_job()
signac.contrib.job.Job(project=..., statepoint={...})

	
signac.diff_jobs(*jobs)

	Find differences among a list of jobs’ state points.

The resulting diff is a dictionary where the keys are job ids and the
values are each job’s state point minus the intersection of all provided
jobs’ state points. The comparison is performed over the combined set of
keys and values.

See signac diff for the command line equivalent.

	Parameters

	*jobs (sequence[Job]) – Sequence of jobs to diff.

	Returns

	A dictionary where the keys are job ids and values are the unique parts
of that job’s state point.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

>>> import signac
>>> project = signac.init_project('project_name')
>>> job1 = project.open_job({'constant': 42, 'diff1': 0, 'diff2': 1}).init()
>>> job2 = project.open_job({'constant': 42, 'diff1': 1, 'diff2': 1}).init()
>>> job3 = project.open_job({'constant': 42, 'diff1': 2, 'diff2': 2}).init()
>>> print(job1)
c4af2b26f1fd256d70799ad3ce3bdad0
>>> print(job2)
b96b21fada698f8934d58359c72755c0
>>> print(job3)
e4289419d2b0e57e4852d44a09f167c0
>>> signac.diff_jobs(job1, job2, job3)
{'c4af2b26f1fd256d70799ad3ce3bdad0': {'diff2': 1, 'diff1': 0},
'b96b21fada698f8934d58359c72755c0': {'diff2': 1, 'diff1': 1},
'e4289419d2b0e57e4852d44a09f167c0': {'diff2': 2, 'diff1': 2}}
>>> signac.diff_jobs(*project)
{'c4af2b26f1fd256d70799ad3ce3bdad0': {'diff2': 1, 'diff1': 0},
'b96b21fada698f8934d58359c72755c0': {'diff2': 1, 'diff1': 1},
'e4289419d2b0e57e4852d44a09f167c0': {'diff2': 2, 'diff1': 2}}

	
signac.get_database(name, hostname=None, config=None)

	Get a database handle.

The database handle is an instance of Database [https://pymongo.readthedocs.io/en/stable/api/pymongo/database.html#pymongo.database.Database],
which provides access to the document collections within one database.

db = signac.db.get_database('MyDatabase')
docs = db.my_collection.find()

Please note, that a collection which did not exist at the point of access,
will automatically be created.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the database to get.

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the configured host.
Defaults to the first configured host, or the
host specified by default_host.

	config (common.config.Config) – The config object to retrieve the host
configuration from.
Defaults to the global configuration.

	Returns

	The database handle.

	Return type

	pymongo.database.Database [https://pymongo.readthedocs.io/en/stable/api/pymongo/database.html#pymongo.database.Database]

See also

https://api.mongodb.org/python/current/api/pymongo/database.html

Deprecated since version 1.3: This will be removed in 2.0. The database package is deprecated.

	
signac.fetch(doc_or_id, mode='r', mirrors=None, num_tries=3, timeout=60, ignore_local=False)

	Fetch the file associated with this document or file id.

This function retrieves a file associated with the provided
index document or file id and behaves like the built-in
open() [https://docs.python.org/3/library/functions.html#open] function, e.g.:

for doc in index:
 with signac.fetch(doc) as file:
 do_something_with(file)

	Parameters

	
	doc_or_id – A file_id or a document with a file_id value.

	mode – Mode to use for opening files.

	mirrors – An optional set of mirrors to fetch the file from.

	num_tries (int [https://docs.python.org/3/library/functions.html#int]) – The number of automatic retry attempts in case of
mirror connection errors.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The time in seconds to wait before an
automatic retry attempt.

	Returns

	The file associated with the document or file id.

	Return type

	A file-like object

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.export_one(doc, index, mirrors=None, num_tries=3, timeout=60)

	Export one document to index and an optionally associated file to mirrors.

	Parameters

	
	doc – A document with a file_id entry.

	docs – The index collection to export to.

	mirrors – An optional set of mirrors to export files to.

	num_tries (int [https://docs.python.org/3/library/functions.html#int]) – The number of automatic retry attempts in case of
mirror connection errors.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The time in seconds to wait before an
automatic retry attempt.

	Returns

	The id and file id after successful export.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.export(docs, index, mirrors=None, update=False, num_tries=3, timeout=60, **kwargs)

	Export docs to index and optionally associated files to mirrors.

The behavior of this function is equivalent to:

for doc in docs:
 export_one(doc, index, mirrors, num_tries)

If the update argument is set to True, the export algorithm will
automatically identify stale index documents, that means documents
that refer to files or state points that have been removed and are
no longer part of the data space. Any document which shares the
root, but not the _id field with any of the updated documents
is considered stale and removed. Using update in combination with
an empty docs sequence will raise ExportError, since it is not
possible to identify stale documents in that case.

Note

This function will automatically delegate to specialized
implementations for special index types. For example, if
the index argument is a MongoDB document collection, the
index documents will be exported via export_pymongo().

	Parameters

	
	docs – The index documents to export.

	index – The collection to export the index to.

	mirrors – An optional set of mirrors to export files to.

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, remove stale index documents, that means
documents that refer to files or state points that no longer exist.

	num_tries (int [https://docs.python.org/3/library/functions.html#int]) – The number of automatic retry attempts in case of
mirror connection errors.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The time in seconds to wait before an
automatic retry attempt.

	kwargs – Optional keyword arguments to pass to
delegate implementations.

	Raises

	ExportError – When using the update argument in combination with
an empty docs sequence.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.export_to_mirror(doc, mirror, num_tries=3, timeout=60)

	Export a file associated with doc to mirror.

	Parameters

	
	doc – A document with a file_id entry.

	mirror – A file-system object to export the file to.

	num_tries (int [https://docs.python.org/3/library/functions.html#int]) – The number of automatic retry attempts in case of
mirror connection errors.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The time in seconds to wait before an
automatic retry attempt.

	Returns

	The file id after successful export.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.export_pymongo(docs, index, mirrors=None, update=False, num_tries=3, timeout=60, chunksize=100)

	Optimized export() function for pymongo index collections.

The behavior of this function is rougly equivalent to:

for doc in docs:
 export_one(doc, index, mirrors, num_tries)

Note

All index documents must be JSON-serializable to
be able to be exported to a MongoDB collection.

	Parameters

	
	docs – The index documents to export.

	index (pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection]) – The database collection to export the index to.

	num_tries (int [https://docs.python.org/3/library/functions.html#int]) – The number of automatic retry attempts in case of
mirror connection errors.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – The time in seconds to wait before an
automatic retry attempt.

	chunksize (int [https://docs.python.org/3/library/functions.html#int]) – The buffer size for export operations.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.index_files(root='.', formats=None, depth=0)

	Generate a file index.

This generator function yields file index documents,
where each index document corresponds to one file.

To index all files in the current working directory,
simply execute:

for doc in signac.index_files():
 print(doc)

A file associated with a file index document can be
fetched via the fetch() function:

for doc in signac.index_files():
 with signac.fetch(doc) as file:
 print(file.read())

This is especially useful if the file index is part of
a collection (Collection) which can be searched
for specific entries.

To limit the file index to files with a specific filename
formats, provide a regular expression as the formats argument.
To index all files that have file ending .txt, execute:

for doc in signac.index_files(formats='.*\.txt'):
 print(doc)

We can specify specific formats by providing a dictionary as
formats argument, where the key is the filename pattern and
the value is an arbitrary formats string, e.g.:

for doc in signac.index_files(formats=
 {r'.*\.txt': 'TextFile', r'.*\.zip': 'ZipFile'}):
 print(doc)

	Parameters

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to index, defaults to the
current working directory.

	formats – Limit the index to files that match the
given regular expression and optionally associate formats
with given patterns.

	depth (int [https://docs.python.org/3/library/functions.html#int]) – Limit the search to the specified directory depth.

	Yields

	The file index documents as dicts.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.index(root='.', tags=None, depth=0, **kwargs)

	Generate a main index.

A main index is compiled from other indexes by searching
for modules named signac_access.py and compiling all
indexes which are yielded from a function get_indexes(root)
defined within that module as well as the indexes generated by
crawlers yielded from a function get_crawlers(root) defined
within that module.

This is a minimal example for a signac_access.py file:

import signac

def get_indexes(root):
 yield signac.index_files(root, r'.*\.txt')

Internally, this function constructs an instance of
MainCrawler and all extra key-word arguments
will be forwarded to the constructor of said main crawler.

	Parameters

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Look for access modules under this directory path.

	tags – If tags are provided, do not execute subcrawlers
that don’t match the same tags.

	depth (int [https://docs.python.org/3/library/functions.html#int]) – Limit the search to the specified directory depth.

	kwargs – These keyword-arguments are forwarded to the
internal MainCrawler instance.

	Yields

	The main index documents as instances of dict.

Deprecated since version 1.3: This will be removed in 2.0. The indexing module is deprecated.

	
signac.flush()

	Execute all deferred JSONDict write operations.

Deprecated since version 1.7: This will be removed in 2.0.

Submodules

signac.cite module

Functions to support citing this software.

	
signac.cite.bibtex(file=None)

	Generate bibtex entries for signac.

The bibtex entries will be printed to screen unless a
filename or a file-like object are provided, in which
case they will be written to the corresponding file.

Note

A full reference should also include the
version of this software. Please refer to the
documentation on how to cite a specific version.

	Parameters

	file – A str or file-like object.
Defaults to sys.stdout.

	
signac.cite.reference(file=None)

	Generate formatted reference entries for signac.

The references will be printed to screen unless a
filename or a file-like object are provided, in which
case they will be written to the corresponding file.

Note

A full reference should also include the
version of this software. Please refer to the
documentation on how to cite a specific version.

	Parameters

	file – A str or file-like object.
Defaults to sys.stdout.

signac.sync module

Synchronization of jobs and projects.

Jobs may be synchronized by copying all data from the source job to the
destination job. This means all files are copied and the documents
are synchronized. Conflicts, that means both jobs contain conflicting
data, may be resolved with a user defined strategy.

The synchronization of projects is in essence the synchronization of all jobs
which are in the destination project with the ones in the source project and
the sync synchronization of the project document. If a specific job does not
exist yet at the destination it is simply cloned, otherwise it is synchronized.

A sync strategy is a function (or functor) that takes the source job,
the destination job, and the name of the file generating the conflict
as arguments and returns the decision whether to overwrite the file as
Boolean. There are some default strategies defined within this module as
part of the FileSync class. These are the default strategies:

	always – Always overwrite on conflict.

	never – Never overwrite on conflict.

	update – Overwrite when the modification time of the source file is newer.

	Ask – Ask the user interactively about each conflicting filename.

For example, to synchronize two projects resolving conflicts by modification time, use:

dest_project.sync(source_project, strategy=sync.FileSync.update)

Unlike files, which are always either overwritten as a whole or not, documents
can be synchronized more fine-grained with a sync function. Such a function (or
functor) takes the source and the destination document as arguments and performs
the synchronization. The user is encouraged to implement their own sync functions,
but there are a few default functions implemented as part of the DocSync class:

	NO_SYNC – Do not perform any synchronization.

	COPY – Apply the same strategy used to resolve file conflicts.

	update – Equivalent to dst.update(src).

	ByKey – Synchronize the source document key by key, more information below.

This is how we could synchronize two jobs, where the documents are synchronized
with a simple update function:

dst_job.sync(src_job, doc_sync=sync.DocSync.update)

The DocSync.ByKey functor attempts to synchronize the destination document
with the source document without overwriting any data. That means this function
behaves similar to update() for a non-intersecting set of keys,
but in addition will preserve nested mappings without overwriting values. In addition,
any key conflict, that means keys that are present in both documents, but have
differing data, will lead to the raise of a DocumentSyncConflict exception.
The user may expclitly decide to overwrite certain keys by providing a “key-strategy”,
which is a function that takes the conflicting key as argument, and returns the
decision whether to overwrite that specific key as Boolean. For example, to sync
two jobs, where conflicting keys should only be overwritten if they contain the
term ‘foo’, we could execute:

dst_job.sync(src_job, doc_sync=sync.DocSync.ByKey(lambda key: 'foo' in key))

This means that all documents are synchronized ‘key-by-key’ and only conflicting keys that
contain the word “foo” will be overwritten, any other conflicts would lead to the
raise of a DocumentSyncConflict exception. A key-strategy may also be
a regular expression, so the synchronization above could also be achieved with:

dst_job.sync(src_job, doc_sync=sync.DocSync.ByKey('foo'))

	
class signac.sync.FileSync

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Collection of file synchronization strategies.

	
class Ask

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resolve sync conflicts by asking whether a file should be overwritten interactively.

	
static always(src, dst, fn)

	Resolve sync conflicts by always overwriting.

	
classmethod keys()

	Return keys.

	
static never(src, dst, fn)

	Resolve sync conflicts by never overwriting.

	
static update(src, dst, fn)

	Resolve sync conflicts based on newest modified timestamp.

	
class signac.sync.DocSync

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Collection of document synchronization functions.

	
class ByKey(key_strategy=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Synchronize documents key by key.

	
COPY = 'copy'

	Copy (and potentially overwrite) documents like any other file.

	
NO_SYNC = False

	Do not synchronize documents.

	
static update(src, dst)

	Perform a simple update.

	
signac.sync.sync_jobs(src, dst, strategy=None, exclude=None, doc_sync=None, recursive=False, follow_symlinks=True, preserve_permissions=False, preserve_times=False, preserve_owner=False, preserve_group=False, deep=False, dry_run=False)

	Synchronize the dst job with the src job.

By default, this method will synchronize all files and document data
of dst job with the src job until a synchronization conflict occurs.
There are two different kinds of synchronization conflicts:

	The two jobs have files with the same name, but different content.

	The two jobs have documents that share keys, but those keys are
mapped to different values.

A file conflict can be resolved by providing a ‘FileSync’ strategy or by
excluding files from the synchronization. An unresolvable conflict is indicated
with the raise of a FileSyncConflict exception.

A document synchronization conflict can be resolved by providing a doc_sync function
that takes the source and the destination document as first and second argument.

	Parameters

	
	src (Job) – The src job, data will be copied from this job’s workspace.

	dst (Job) – The dst job, data will be copied to this job’s workspace.

	strategy (callable) – A synchronization strategy for file conflicts. The strategy should be a
callable with signature strategy(src, dst, filepath) where src
and dst are the source and destination instances of
Project and filepath is the filepath relative
to the project root. If no strategy is provided, a
errors.SyncConflict exception will be raised upon conflict.
(Default value = None)

	exclude (str [https://docs.python.org/3/library/stdtypes.html#str]) – A filename exclusion pattern. All files matching this pattern will be
excluded from the synchronization process. (Default value = None)

	doc_sync (attribute or callable from DocSync) – A synchronization strategy for document keys. The default is to use a
safe key-by-key strategy that will not overwrite any values on
conflict, but instead raises a DocumentSyncConflict
exception.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – Recursively synchronize sub-directories encountered within the job
workspace directories. (Default value = False)

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) – Follow and copy the target of symbolic links. (Default value = True)

	preserve_permissions (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file permissions (Default value = False)

	preserve_times (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file modification times (Default value = False)

	preserve_owner (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file owner (Default value = False)

	preserve_group (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file group ownership (Default value = False)

	dry_run (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do not actually perform any synchronization operations.
(Default value = False)

	deep (bool [https://docs.python.org/3/library/functions.html#bool]) – (Default value = False)

	
signac.sync.sync_projects(source, destination, strategy=None, exclude=None, doc_sync=None, selection=None, check_schema=True, recursive=False, follow_symlinks=True, preserve_permissions=False, preserve_times=False, preserve_owner=False, preserve_group=False, deep=False, dry_run=False, parallel=False, collect_stats=False)

	Synchronize the destination project with the source project.

Try to clone all jobs from the source to the destination.
If the destination job already exist, try to synchronize the job using the
optionally specified strategy.

	Parameters

	
	source (class:~.Project) – The project presenting the source for synchronization.

	destination (class:~.Project) – The project that is modified for synchronization.

	strategy (callable) – A synchronization strategy for file conflicts. The strategy should be a
callable with signature strategy(src, dst, filepath) where src
and dst are the source and destination instances of
Project and filepath is the filepath relative
to the project root. If no strategy is provided, a
errors.SyncConflict exception will be raised upon conflict.
(Default value = None)

	exclude (str [https://docs.python.org/3/library/stdtypes.html#str]) – A filename exclusion pattern. All files matching this pattern will be
excluded from the synchronization process. (Default value = None)

	doc_sync (attribute or callable from DocSync) – A synchronization strategy for document keys. The default is to use a
safe key-by-key strategy that will not overwrite any values on
conflict, but instead raises a DocumentSyncConflict
exception.

	selection (sequence of Job or job ids (str)) – Only synchronize the given selection of jobs. (Default value = None)

	check_schema (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, only synchronize if this and the other project have a matching
state point schema. See also: detect_schema(). (Default value =
True)

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – Recursively synchronize sub-directories encountered within the job
workspace directories. (Default value = False)

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) – Follow and copy the target of symbolic links. (Default value = True)

	preserve_permissions (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file permissions (Default value = False)

	preserve_times (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file modification times (Default value = False)

	preserve_owner (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file owner (Default value = False)

	preserve_group (bool [https://docs.python.org/3/library/functions.html#bool]) – Preserve file group ownership (Default value = False)

	dry_run (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do not actually perform the synchronization operation, just
log what would happen theoretically. Useful to test synchronization
strategies without the risk of data loss. (Default value = False)

	deep (bool [https://docs.python.org/3/library/functions.html#bool]) – (Default value = False)

	parallel (bool [https://docs.python.org/3/library/functions.html#bool]) – (Default value = False)

	collect_stats (bool [https://docs.python.org/3/library/functions.html#bool]) – (Default value = False)

	Returns

	Returns stats if collect_stats is True, else None.

	Return type

	NoneType or FileTransferStats

	Raises

	
	DocumentSyncConflict – If there are conflicting keys within the project or job documents that
cannot be resolved with the given strategy or if there is no strategy
provided.

	FileSyncConflict – If there are differing files that cannot be resolved with the given
strategy or if no strategy is provided.

	SchemaSyncConflict – In case that the check_schema argument is True and the detected state
point schema of this and the other project differ.

signac.warnings module

Module for signac deprecation warnings.

	
exception signac.warnings.SignacDeprecationWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

Indicates the deprecation of a signac feature, API or behavior.

This class indicates a user-relevant deprecation and is therefore
a UserWarning, not a DeprecationWarning which is hidden by default.

signac.errors module

Errors raised by signac.

	
exception signac.errors.AuthenticationError

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Authentication error.

	
exception signac.errors.BufferException

	Bases: signac.core.errors.Error

An exception occurred in buffered mode.

	
exception signac.errors.BufferedFileError(files)

	Bases: signac.core.jsondict.BufferException

Raised when an error occurred while flushing one or more buffered files.

	
files

	A dictionary of files that caused issues during the flush operation,
mapped to a possible reason for the issue or None in case that it
cannot be determined.

	
exception signac.errors.ConfigError

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Error with parsing or reading a configuration file.

	
exception signac.errors.DestinationExistsError(destination)

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

The destination for a move or copy operation already exists.

	Parameters

	destination (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination causing the error.

	
exception signac.errors.DocumentSyncConflict(keys)

	Bases: signac.errors.SyncConflict

Raised when a synchronization operation fails due to a document conflict.

	
keys = None

	The keys that caused the conflict.

	
exception signac.errors.Error

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class used for signac Errors.

	
exception signac.errors.ExportError

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Error exporting documents to a mirror.

	
exception signac.errors.FetchError

	Bases: FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError]

Error in fetching data.

	
exception signac.errors.FileSyncConflict(filename)

	Bases: signac.errors.SyncConflict

Raised when a synchronization operation fails due to a file conflict.

	
filename = None

	The filename of the file that caused the conflict.

	
exception signac.errors.IncompatibleSchemaVersion

	Bases: signac.core.errors.Error

The project’s schema version is incompatible with this version of signac.

	
exception signac.errors.InvalidKeyError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised when a user uses a non-conforming key.

	
exception signac.errors.JobsCorruptedError(job_ids)

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

The state point manifest file of one or more jobs cannot be opened or is corrupted.

	Parameters

	job_ids – The job id(s) of the corrupted job(s).

	
exception signac.errors.KeyTypeError

	Bases: TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]

Raised when a user uses a key of invalid type.

	
exception signac.errors.SchemaSyncConflict(schema_src, schema_dst)

	Bases: signac.errors.SyncConflict

Raised when a synchronization operation fails due to schema differences.

	
exception signac.errors.StatepointParsingError

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Indicates an error that occurred while trying to identify a state point.

	
exception signac.errors.SyncConflict

	Bases: signac.core.errors.Error, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised when a synchronization operation fails.

	
exception signac.errors.WorkspaceError(error)

	Bases: signac.core.errors.Error, OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Raised when there is an issue creating or accessing the workspace.

	Parameters

	error – The underlying error causing this issue.

synced_collections package

Data Types

synced_collections.synced_collection module

Implement the SyncedCollection class.

	
class signac.synced_collections.data_types.synced_collection.SyncedCollection(parent=None, *args, **kwargs)

	Bases: collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection]

An abstract Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection] type that is synced with a backend.

This class extends collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection] and adds a number of abstract
internal methods that must be implemented by its subclasses. These methods can be
split into two groups of functions that are designed to be implemented by
separate subtrees in the inheritance hierarchy that can then be composed:

Concrete Collection Types

These subclasses should implement the APIs for specific types of
collections. For instance, a list-like SyncedCollection
should implement the standard methods for sequences. In addition, they
must implement the following abstract methods defined by the
SyncedCollection:

	is_base_type(): Determines whether an object satisfies the
semantics of the collection object a given SyncedCollection
is designed to mimic.

	_to_base(): Converts a SyncedCollection to its
natural base type (e.g. a list).

	_update(): Updates the SyncedCollection to match the
contents of the provided collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection].
After calling sc._update(c), we must have that sc == c; however,
since such updates are frequent when loading and saving data to a
resource, _update() should be implemented to minimize new object
creation wherever possible.

Backend

These subclasses encode the process by which in-memory data is
converted into a representation suitable for a particular backend. For
instance, a JSON backend should know how to save a Python object into a
JSON-encoded file and then read that object back.

	_load_from_resource(): Loads data from the underlying
resource and returns it in an object satisfying is_base_type().

	_save_to_resource(): Stores data to the underlying resource.

	_backend: A unique string identifier for the resource backend.

Since these functionalities are effectively completely orthogonal, members of
a given group should be interchangeable. For instance, a dict-like SyncedCollection
can be combined equally easily with JSON, MongoDB, or SQL backends.

Validation

Due to the restrictions of a particular backend or the needs of a particular
application, synced collections may need to restrict the data that they can
store. Validators provide a standardized mechanism for this. A validator is
a callable that parses any data added to a SyncedCollection and
raises an Exception if any invalid data is provided. Validators cannot
modify the data and should have no side effects. They are purely provided
as a mechanism to reject invalid data. For example, a JSON validator would
raise Exceptions if it detected non-string keys in a dict.

Since SyncedCollection is designed for extensive usage of
inheritance, validators may be inherited by subclasses. There are two attributes
that subclasses of SyncedCollection can define to control the
validators used:

	_validators: A list of callables that will be inherited by all
subclasses.

	_all_validators: A list of callables that will be used to
validate this class, and this class alone.

When a SyncedCollection subclass is initialized (note that this
is at class definition time, not when instances are created), its
_register_validators() method will be called. If this class defines
an _all_validators attribute, this set of validators will be used by all
instances of this class. Otherwise, _register_validators() will traverse
the MRO and collect the _validators attributes from all parents of a class,
and store these in the _all_validators attribute for the class.

Note

Typically, a synced collection will be initialized with resource information,
and data will be pulled from that resource. However, initializing with
both data and resource information is a valid use case. In this case, the
initial data will be validated by the standard validators, however, it
will not be checked against the contents stored in the synced resource and
is assumed to be consistent. This constructor pattern can be useful to
avoid unnecessary resource accesses.

Thread safety

Whether or not SyncedCollection objects are thread-safe depends on the
implementation of the backend. Thread-safety of SyncedCollection objects
is predicated on backends providing an atomic write operation. All concrete
collection types use mutexes to guard against concurrent write operations,
while allowing read operations to happen freely. The validity of this mode
of access depends on the write operations of a SyncedCollection being
atomic, specifically the :meth:`~._save_to_resource method. Whether or not
a particular subclass of SyncedCollection is thread-safe should be
indicated by that subclass setting the _supports_threading class variable
to True. This variable is set to False by SyncedCollection,
so subclasses must explicitly opt-in to support threading by setting this
variable to True.

Backends that support multithreaded execution will have multithreaded
support turned on by default. This support can be enabled or disabled using
the enable_multithreading() and disable_multithreading()
methods. enable_multithreading() will raise a ValueError if called
on a class that does not support multithreading.

	Parameters

	parent (SyncedCollection, optional) – If provided, the collection within which this collection is nested
(Default value = None).
A parent instance of SyncedCollection or None. If None,
the collection owns its own data, otherwise it is nested within its
parent. Every SyncedCollection either owns its own data, or has
a parent (Default value = None).

	
_LoadSaveType

	alias of _LoadAndSave

	
_backend

	The backend associated with a given collection.

This property is abstract to enforce that subclasses implement it.
Since it’s only internal, subclasses can safely override it with just a
raw attribute; this property just serves as a way to enforce the
abstract API for subclasses.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod _from_base(data, **kwargs)

	Dynamically resolve the type of object to the corresponding synced collection.

This method assumes that data has already been validated. This assumption
can always be met, since this method should only be called internally by
other methods that modify the internal collection data. While this requirement
does require that all calling methods be responsible for validation, it
confers significant performance benefits because it can instruct any invoked
class constructors not to validate, which is especially important for nested
collections.

	Parameters

	
	data (Collection) – Data to be converted from base type.

	**kwargs – Any keyword arguments to pass to the collection constructor.

	Returns

	Synced object of corresponding base type.

	Return type

	Collection

Notes

This method relies on the internal registry of subclasses populated by
__init_subclass__() and the is_base_type() method to
determine the subclass with the appropriate backend and data type. Once
an appropriate type is determined, that class’s constructor is called.
Since this method relies on the constructor and other methods, it can
be concretely implemented here rather than requiring subclass
implementations.

	
_load()

	Load the data from the backend.

This method encodes the recursive logic required to handle the loading of
nested collections. For a collection contained within another collection,
only the root is ever responsible for loading the data. This method
handles the appropriate recursive calls, then farms out the actual reading
to the abstract method _load_from_resource().

	
_load_from_resource()

	Load data from underlying backend.

This method must be implemented for each backend. Backends may choose
to return None, signaling that no modification should be performed
on the data in memory. This mode is useful for backends where the underlying
resource (e.g. a file) may not initially exist, but can be transparently
created on save.

	Returns

	An equivalent unsynced collection satisfying is_base_type() that
contains the data in the underlying resource (e.g. a file).

	Return type

	Collection or None [https://docs.python.org/3/library/constants.html#None]

	
classmethod _register_validators()

	Register all inherited validators to this class.

This method is called by __init_subclass__ when subclasses are created
to control what validators will be applied to data added to instances of
that class. By default, the _all_validators class variable defined
on the class itself determines the validation rules for that class. If
that variable is not defined, then all parents of the class are searched,
and a list of validators is constructed by concatenating the _validators
class variable for each parent class that defines it.

	
_save()

	Save the data to the backend.

This method encodes the recursive logic required to handle the saving of
nested collections. For a collection contained within another collection,
only the parent is ever responsible for storing the data. This method
handles the appropriate recursive calls, then farms out the actual writing
to the abstract method _save_to_resource().

	
_save_to_resource()

	Save data to the backend.

This method must be implemented for each backend.

	
_to_base()

	Dynamically resolve the synced collection to the corresponding base type.

This method should not load the data from the underlying resource, it
should simply converts the current in-memory representation of a synced
collection to its naturally corresponding unsynced collection type.

	Returns

	An equivalent unsynced collection satisfying is_base_type().

	Return type

	Collection

	
_update(data)

	Update the in-memory representation to match the provided data.

The purpose of this method is to update the SyncedCollection to match
the data in the underlying resource. The result of calling this method
should be that self == data. The reason that this method is
necessary is that SyncedCollections can be nested, and nested
collections must also be instances of SyncedCollection so that
synchronization occurs even when nested structures are modified.
Recreating the full nested structure every time data is reloaded from
file is highly inefficient, so this method performs an in-place update
that only changes entries that need to be changed.

	Parameters

	data (Collection) – A collection satisfying is_base_type().

	
_validate(data)

	Validate the input data.

	Parameters

	data (Collection) – An collection satisfying is_base_type().

	
classmethod disable_multithreading()

	Disable all safety checks and thread locks required for thread safety.

The mutex locks required to enable multithreading introduce nontrivial performance
costs, so they can be disabled for classes that support it.

	
classmethod enable_multithreading()

	Enable safety checks and thread locks required for thread safety.

Support for multithreaded execution can be disabled by calling
disable_multithreading(); calling this method reverses that.

	
classmethod is_base_type(data)

	Check whether data is of the same base type (such as list or dict) as this class.

	Parameters

	data (Any) – The input data to test.

	Returns

	Whether or not the object can be converted into this synced collection type.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class signac.synced_collections.data_types.synced_collection._LoadAndSave(collection)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A context manager for SyncedCollection to wrap saving and loading.

Any write operation on a synced collection must be preceded by a load and
followed by a save. Moreover, additional logic may be required to handle
other aspects of the synchronization, particularly the acquisition of thread
locks. This class abstracts this concept, making it easy for subclasses to
customize the behavior if needed (for instance, to introduce additional locks).

synced_collections.synced_dict module

Implements the SyncedDict.

This implements a dict-like data structure that also conforms to the
SyncedCollection API and can be combined with any backend type to
give a dict-like API to a synchronized data structure.

	
class signac.synced_collections.data_types.synced_dict.SyncedDict(data=None, _validate=True, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

Implement the dict data structure along with values access through attributes named as keys.

The SyncedDict inherits from SyncedCollection
and MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]. Therefore, it behaves like a
dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Parameters

	
	data (Mapping, optional) – The initial data to populate the dict. If None, defaults to
{} (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the SyncedDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict],
there are important distinctions to remember. In particular, because
operations are reflected as changes to an underlying backend, copying (even
deep copying) a SyncedDict instance may exhibit unexpected
behavior. If a true copy is required, you should use the _to_base()
method to get a dict [https://docs.python.org/3/library/stdtypes.html#dict] representation, and if necessary construct a
new SyncedDict.

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
classmethod is_base_type(data)

	Check whether the data is an instance of mapping.

	Parameters

	data (any) – Data to be checked.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
reset(data)

	Update the instance with new data.

	Parameters

	data (mapping) – Data to update the instance.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data is not a mapping.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → an object providing a view on D's values

	

synced_collections.synced_list module

Implements the SyncedList.

This implements a list-like data structure that also conforms to the
SyncedCollection API and can be combined with any backend type to
give a list-like API to a synchronized data structure.

	
class signac.synced_collections.data_types.synced_list.SyncedList(data=None, _validate=True, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection, collections.abc.MutableSequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence]

Implementation of list data structure.

The SyncedList inherits from SyncedCollection
and MutableSequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence]. Therefore, it behaves similar
to a list [https://docs.python.org/3/library/stdtypes.html#list].

	Parameters

	
	data (Sequence, optional) – The initial data to populate the list. If None, defaults to
[] (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the SyncedList object behaves like a list [https://docs.python.org/3/library/stdtypes.html#list], there
are important distinctions to remember. In particular, because operations
are reflected as changes to an underlying backend, copying (even deep
copying) a SyncedList instance may exhibit unexpected behavior. If
a true copy is required, you should use the _to_base() method to get a
list [https://docs.python.org/3/library/stdtypes.html#list] representation, and if necessary construct a new
SyncedList.

	
append(item)

	S.append(value) – append value to the end of the sequence

	
clear() → None -- remove all items from S

	

	
extend(iterable)

	S.extend(iterable) – extend sequence by appending elements from the iterable

	
insert(index, item)

	S.insert(index, value) – insert value before index

	
classmethod is_base_type(data)

	Check whether the data is an non-string Sequence.

	Parameters

	data (Any) – Data to be checked

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
remove(value)

	S.remove(value) – remove first occurrence of value.
Raise ValueError if the value is not present.

	
reset(data)

	Update the instance with new data.

	Parameters

	data (non-string Sequence) – Data to update the instance.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data is not a non-string sequence.

Backends

synced_collections.backends.collection_json module

Implements a JSON SyncedCollection backend.

	
class signac.synced_collections.backends.collection_json.BufferedJSONAttrDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.BufferedJSONDict, signac.synced_collections.data_types.attr_dict.AttrDict

A buffered JSONAttrDict.

	
class signac.synced_collections.backends.collection_json.BufferedJSONAttrList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.BufferedJSONList

A BufferedJSONList whose dict-like children will be of type BufferedJSONAttrDict.

	
class signac.synced_collections.backends.collection_json.BufferedJSONCollection(parent=None, filename=None, *args, **kwargs)

	Bases: signac.synced_collections.buffers.serialized_file_buffered_collection.SerializedFileBufferedCollection, signac.synced_collections.backends.collection_json.JSONCollection

A JSONCollection that supports I/O buffering.

This class implements the buffer protocol defined by
BufferedCollection. The concrete implementation of buffering
behavior is defined by the SerializedFileBufferedCollection.

	
class signac.synced_collections.backends.collection_json.BufferedJSONDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.BufferedJSONCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A buffered JSONDict.

	
class signac.synced_collections.backends.collection_json.BufferedJSONList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.BufferedJSONCollection, signac.synced_collections.data_types.synced_list.SyncedList

A buffered JSONList.

	
class signac.synced_collections.backends.collection_json.JSONAttrDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.JSONDict, signac.synced_collections.data_types.attr_dict.AttrDict

A dict-like data structure that synchronizes with a persistent JSON file.

Unlike JSONAttrDict, this class also supports attribute-based access to
dictionary contents, e.g. doc.foo == doc['foo'].

Examples

>>> doc = JSONAttrDict('data.json', write_concern=True)
>>> doc['foo'] = "bar"
>>> assert doc.foo == doc['foo'] == "bar"
>>> assert 'foo' in doc
>>> del doc['foo']
>>> doc['foo'] = dict(bar=True)
>>> doc
{'foo': {'bar': True}}
>>> doc.foo.bar = False
>>> doc
{'foo': {'bar': False}}

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

	write_concern (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ensure file consistency by writing changes back to a temporary file
first, before replacing the original file (Default value = False).

	data (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], optional) – The initial data passed to JSONAttrDict. If None, defaults to
{} (Default value = None).

	parent (JSONCollection, optional) – A parent instance of JSONCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the JSONAttrDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying file, copying (even deep copying) a JSONAttrDict
instance may exhibit unexpected behavior. If a true copy is required, you
should use the call operator to get a dictionary representation, and if
necessary construct a new JSONAttrDict instance.

	
class signac.synced_collections.backends.collection_json.JSONAttrList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.JSONList

A JSONList whose dict-like children will be of type JSONAttrDict.

	
class signac.synced_collections.backends.collection_json.JSONCollection(filename=None, write_concern=False, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection

A SyncedCollection that synchronizes with a JSON file.

This collection implements synchronization by reading and writing the associated
JSON file in its entirety for every read/write operation. This backend is a good
choice for maximum accessibility and transparency since all data is immediately
accessible in the form of a text file with no additional tooling, but is
likely a poor choice for high performance applications.

Thread safety

The JSONCollection is thread-safe. To make these collections safe, the
write_concern flag is ignored in multithreaded execution, and the
write is always performed via a write to temporary file followed by a
replacement of the original file. The file replacement operation uses
os.replace() [https://docs.python.org/3/library/os.html#os.replace], which is guaranteed to be atomic by the Python standard.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the associated JSON file on disk.

	write_concern (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ensure file consistency by writing changes back to a temporary file
first, before replacing the original file (Default value = False).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

	
filename

	The name of the associated JSON file on disk.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class signac.synced_collections.backends.collection_json.JSONDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.JSONCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A dict-like data structure that synchronizes with a persistent JSON file.

Examples

>>> doc = JSONDict('data.json', write_concern=True)
>>> doc['foo'] = "bar"
>>> assert doc['foo'] == "bar"
>>> assert 'foo' in doc
>>> del doc['foo']
>>> doc['foo'] = dict(bar=True)
>>> doc
{'foo': {'bar': True}}

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

	write_concern (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ensure file consistency by writing changes back to a temporary file
first, before replacing the original file (Default value = False).

	data (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], optional) – The initial data passed to JSONDict. If None, defaults to
{} (Default value = None).

	parent (JSONCollection, optional) – A parent instance of JSONCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the JSONDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying file, copying (even deep copying) a JSONDict
instance may exhibit unexpected behavior. If a true copy is required, you
should use the call operator to get a dictionary representation, and if
necessary construct a new JSONDict instance.

	
class signac.synced_collections.backends.collection_json.JSONList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.JSONCollection, signac.synced_collections.data_types.synced_list.SyncedList

A list-like data structure that synchronizes with a persistent JSON file.

Only non-string sequences are supported by this class.

Examples

>>> synced_list = JSONList('data.json', write_concern=True)
>>> synced_list.append("bar")
>>> assert synced_list[0] == "bar"
>>> assert len(synced_list) == 1
>>> del synced_list[0]

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

	write_concern (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Ensure file consistency by writing changes back to a temporary file
first, before replacing the original file (Default value = None).

	data (non-str collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence], optional) – The initial data passed to JSONList `. If ``None`, defaults to
[] (Default value = None).

	parent (JSONCollection, optional) – A parent instance of JSONCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the JSONList object behaves like a list [https://docs.python.org/3/library/stdtypes.html#list], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying file, copying (even deep copying) a JSONList
instance may exhibit unexpected behavior. If a true copy is required, you
should use the call operator to get a dictionary representation, and if
necessary construct a new JSONList instance.

	
class signac.synced_collections.backends.collection_json.MemoryBufferedJSONAttrDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.MemoryBufferedJSONDict, signac.synced_collections.data_types.attr_dict.AttrDict

A buffered JSONAttrDict.

	
class signac.synced_collections.backends.collection_json.MemoryBufferedJSONAttrList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.MemoryBufferedJSONList

A MemoryBufferedJSONList whose dict-like children will be of type MemoryBufferedJSONAttrDict.

	
class signac.synced_collections.backends.collection_json.MemoryBufferedJSONCollection(parent=None, filename=None, *args, **kwargs)

	Bases: signac.synced_collections.buffers.memory_buffered_collection.SharedMemoryFileBufferedCollection, signac.synced_collections.backends.collection_json.JSONCollection

A JSONCollection that supports I/O buffering.

This class implements the buffer protocol defined by BufferedCollection.
The concrete implementation of buffering behavior is defined by the
SharedMemoryFileBufferedCollection.

	
class signac.synced_collections.backends.collection_json.MemoryBufferedJSONDict(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.MemoryBufferedJSONCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A buffered JSONDict.

	
class signac.synced_collections.backends.collection_json.MemoryBufferedJSONList(filename=None, write_concern=False, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_json.MemoryBufferedJSONCollection, signac.synced_collections.data_types.synced_list.SyncedList

A buffered JSONList.

	
signac.synced_collections.backends.collection_json.json_attr_dict_validator(data)

	Validate data for JSONAttrDict.

This validator combines the logic from the following validators into one to
make validation more efficient:

	This validator combines the following logic:

	
	JSON format validation

	Ensuring no dots are present in string keys

	Converting non-str keys to strings. This is a backwards compatibility
layer that will be removed in signac 2.0.

	Parameters

	data – Data to validate.

	Raises

	
	KeyTypeError – If key data type is not supported.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the data type of data is not supported.

synced_collections.backends.collection_mongodb module

Implements a MongoDB SyncedCollection backend.

	
class signac.synced_collections.backends.collection_mongodb.MongoDBCollection(collection=None, uid=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection

A SyncedCollection that synchronizes with a MongoDB document.

In MongoDB, a database is composed of multiple MongoDB collections, which
are analogous to tables in SQL databases but do not enforce a schema like
in relational databases. In turn, collections are composed of documents,
which are analogous to rows in a table but are much more flexible, storing
any valid JSON object in a JSON-like encoded format known as BSON
(“binary JSON”).

Each MongoDBCollection can be represented as a MongoDB document,
so this backend stores the MongoDBCollection as a single
document within the collection provided by the user. The document is
identified by a unique key provided by the user.

Thread safety

The MongoDBCollection is not thread-safe.

	Parameters

	
	collection (pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection]) – The MongoDB client in which to store data.

	uid (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The unique key-value mapping added to the data and stored in the document
so that it is uniquely identifiable in the MongoDB collection. The key
“data” is reserved and may not be part of this uid.

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

The user is responsible for providing a unique id such that there are no
possible collisions between different MongoDBCollection instances
stored in the same MongoDB collection. Failure to do so may result in data
corruption if multiple documents are found to be apparently associated with
a given uid.

	
collection

	Get the collection being synced to.

	Type

	pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection]

	
uid

	Get the unique mapping used to identify this collection.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class signac.synced_collections.backends.collection_mongodb.MongoDBDict(collection=None, uid=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_mongodb.MongoDBCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A dict-like data structure that synchronizes with a document in a MongoDB collection.

Examples

>>> doc = MongoDBDict('data')
>>> doc['foo'] = "bar"
>>> assert doc['foo'] == "bar"
>>> assert 'foo' in doc
>>> del doc['foo']
>>> doc['foo'] = dict(bar=True)
>>> doc
{'foo': {'bar': True}}

	Parameters

	
	collection (pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection], optional) – A pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection] instance (Default value = None).

	uid (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The unique key-value mapping identifying the collection (Default value = None).

	data (non-str collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], optional) – The initial data passed to MongoDBDict. If None, defaults to
{} (Default value = None).

	parent (MongoDBCollection, optional) – A parent instance of MongoDBCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the MongoDBDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict], there are
important distinctions to remember. In particular, because operations are
reflected as changes to an underlying database, copying a
MongoDBDict instance may exhibit unexpected behavior. If a true
copy is required, you should use the call operator to get a dictionary
representation, and if necessary construct a new MongoDBDict
instance.

	
class signac.synced_collections.backends.collection_mongodb.MongoDBList(collection=None, uid=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_mongodb.MongoDBCollection, signac.synced_collections.data_types.synced_list.SyncedList

A list-like data structure that synchronizes with a document in a MongoDB collection.

Only non-string sequences are supported by this class.

Examples

>>> synced_list = MongoDBList('data')
>>> synced_list.append("bar")
>>> assert synced_list[0] == "bar"
>>> assert len(synced_list) == 1
>>> del synced_list[0]

	Parameters

	
	collection (pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection], optional) – A pymongo.collection.Collection [https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html#pymongo.collection.Collection] instance (Default value = None).

	uid (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The unique key-value mapping identifying the collection (Default value = None).

	data (non-str collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence], optional) – The initial data passed to MongoDBList. If None, defaults to
[] (Default value = None).

	parent (MongoDBCollection, optional) – A parent instance of MongoDBCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the MongoDBList object behaves like a list [https://docs.python.org/3/library/stdtypes.html#list], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying database, copying a MongoDBList instance may
exhibit unexpected behavior. If a true copy is required, you should use the
call operator to get a dictionary representation, and if necessary
construct a new MongoDBList instance.

synced_collections.backends.collection_redis module

Implements a Redis SyncedCollection backend.

	
class signac.synced_collections.backends.collection_redis.RedisCollection(client=None, key=None, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection

A SyncedCollection that synchronizes with a Redis database.

This backend stores data in Redis by associating it with the provided key.

Thread safety

The RedisCollection is not thread-safe.

	Parameters

	
	client (redis.Redis [https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis]) – The Redis client used to persist data.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key associated with this collection in the Redis database.

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

	
client

	The Redis client used to store the data.

	Type

	redis.Redis

	
key

	The key associated with this collection stored in Redis.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class signac.synced_collections.backends.collection_redis.RedisDict(client=None, key=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_redis.RedisCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A dict-like data structure that synchronizes with a persistent Redis database.

Examples

>>> doc = RedisDict('data')
>>> doc['foo'] = "bar"
>>> assert doc['foo'] == "bar"
>>> assert 'foo' in doc
>>> del doc['foo']
>>> doc['foo'] = dict(bar=True)
>>> doc
{'foo': {'bar': True}}

	Parameters

	
	client (redis.Redis [https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis], optional) – A redis client (Default value = None).

	key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The key of the collection (Default value = None).

	data (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], optional) – The initial data passed to RedisDict. If None, defaults to
{} (Default value = None).

	parent (RedisCollection, optional) – A parent instance of RedisCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the RedisDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying database, copying a RedisDict instance may
exhibit unexpected behavior. If a true copy is required, you should use the
call operator to get a dictionary representation, and if necessary
construct a new RedisDict instance.

	
class signac.synced_collections.backends.collection_redis.RedisList(client=None, key=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_redis.RedisCollection, signac.synced_collections.data_types.synced_list.SyncedList

A list-like data structure that synchronizes with a persistent Redis database.

Only non-string sequences are supported by this class.

Examples

>>> synced_list = RedisList('data')
>>> synced_list.append("bar")
>>> assert synced_list[0] == "bar"
>>> assert len(synced_list) == 1
>>> del synced_list[0]

	Parameters

	
	client (redis.Redis [https://redis-py.readthedocs.io/en/stable/connections.html#redis.Redis], optional) – A Redis client (Default value = None).

	key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The key of the collection (Default value = None).

	data (non-str collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence], optional) – The initial data passed to RedisList. If None, defaults to
[] (Default value = None).

	parent (RedisCollection, optional) – A parent instance of RedisCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the RedisList object behaves like a list [https://docs.python.org/3/library/stdtypes.html#list], there are
important distinctions to remember. In particular, because operations are
reflected as changes to an underlying database, copying a
RedisList instance may exhibit unexpected behavior. If a true copy
is required, you should use the call operator to get a dictionary
representation, and if necessary construct a new RedisList
instance.

synced_collections.backends.collection_zarr module

Implements a Zarr SyncedCollection backend.

	
class signac.synced_collections.backends.collection_zarr.ZarrCollection(group=None, name=None, codec=None, *args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection

A SyncedCollection that synchronizes with a Zarr group.

Since Zarr is designed for storage of array-like data, this backend implements
synchronization by storing the collection in a 1-element object array. The user
provides the group within which to store the data and the name of the data in
the group.

Thread safety

The ZarrCollection is not thread-safe.

	Parameters

	
	group (zarr.hierarchy.Group [https://zarr.readthedocs.io/en/stable/api/hierarchy.html#zarr.hierarchy.Group]) – The Zarr group in which to store data.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name under which this collection is stored in the Zarr group.

	codec (numcodecs.abc.Codec [https://numcodecs.readthedocs.io/en/stable/abc.html#numcodecs.abc.Codec]) – The encoding mechanism for the data. If not provided, defaults to JSON
encoding (Default value: None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

	
codec

	The encoding method used for the data.

	Type

	numcodecs.abc.Codec [https://numcodecs.readthedocs.io/en/stable/abc.html#numcodecs.abc.Codec]

	
group

	The Zarr group storing the data.

	Type

	zarr.hierarchy.Group [https://zarr.readthedocs.io/en/stable/api/hierarchy.html#zarr.hierarchy.Group]

	
name

	The name of this data in the Zarr group.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class signac.synced_collections.backends.collection_zarr.ZarrDict(group=None, name=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_zarr.ZarrCollection, signac.synced_collections.data_types.synced_dict.SyncedDict

A dict-like data structure that synchronizes with a Zarr group.

Examples

>>> doc = ZarrDict('data')
>>> doc['foo'] = "bar"
>>> assert doc['foo'] == "bar"
>>> assert 'foo' in doc
>>> del doc['foo']
>>> doc['foo'] = dict(bar=True)
>>> doc
{'foo': {'bar': True}}

	Parameters

	
	group (zarr.hierarchy.Group [https://zarr.readthedocs.io/en/stable/api/hierarchy.html#zarr.hierarchy.Group], optional) – The group in which to store data (Default value = None).

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the collection (Default value = None).

	data (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], optional) – The initial data passed to ZarrDict. If None, defaults to
{} (Default value = None).

	parent (ZarrCollection, optional) – A parent instance of ZarrCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the ZarrDict object behaves like a dict [https://docs.python.org/3/library/stdtypes.html#dict], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying database, copying (even deep copying) a
ZarrDict instance may exhibit unexpected behavior. If a true copy is
required, you should use the call operator to get a dictionary
representation, and if necessary construct a new ZarrDict instance.

	
class signac.synced_collections.backends.collection_zarr.ZarrList(group=None, name=None, data=None, parent=None, *args, **kwargs)

	Bases: signac.synced_collections.backends.collection_zarr.ZarrCollection, signac.synced_collections.data_types.synced_list.SyncedList

A list-like data structure that synchronizes with a Zarr group.

Only non-string sequences are supported by this class.

Examples

>>> synced_list = ZarrList('data')
>>> synced_list.append("bar")
>>> assert synced_list[0] == "bar"
>>> assert len(synced_list) == 1
>>> del synced_list[0]

	Parameters

	
	group (zarr.hierarchy.Group [https://zarr.readthedocs.io/en/stable/api/hierarchy.html#zarr.hierarchy.Group], optional) – The group in which to store data (Default value = None).

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the collection (Default value = None).

	data (non-str collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence], optional) – The initial data passed to ZarrList. If None, defaults to
[] (Default value = None).

	parent (ZarrCollection, optional) – A parent instance of ZarrCollection or None. If None,
the collection owns its own data (Default value = None).

	*args – Positional arguments forwarded to parent constructors.

	**kwargs – Keyword arguments forwarded to parent constructors.

Warning

While the ZarrList object behaves like a list [https://docs.python.org/3/library/stdtypes.html#list], there are important
distinctions to remember. In particular, because operations are reflected
as changes to an underlying database, copying (even deep copying) a
ZarrList instance may exhibit unexpected behavior. If a true copy is
required, you should use the call operator to get a dictionary
representation, and if necessary construct a new ZarrList instance.

Buffers

synced_collections.buffers.buffered_collection module

Defines a buffering protocol for SyncedCollection objects.

Depending on the choice of backend, synchronization may be an expensive process.
In that case, it can be helpful to allow many in-memory modifications to occur
before any synchronization is attempted. Since many collections could be pointing
to the same underlying resource, maintaining proper data coherency across different
instances requires careful consideration of how the data is stored. The appropriate
buffering methods can differ for different backends; as a result, the basic
interface simply lays out the API for buffering and leaves implementation
details for specific backends to handle. Judicious use of buffering can
dramatically speed up code paths that might otherwise involve, for instance,
heavy I/O. The specific buffering mechanism must be implemented by each backend
since it depends on the nature of the underlying data format.

All buffered collections expose a local context manager for buffering. In
addition, each backend exposes a context manager
BufferedCollection.buffer_backend() that indicates to all buffered
collections of that backend that they should enter buffered mode. These context
managers may be nested freely, and buffer flushes will occur when all such
managers have been exited.

	
class signac.synced_collections.buffers.buffered_collection.BufferedCollection(*args, **kwargs)

	Bases: signac.synced_collections.data_types.synced_collection.SyncedCollection

A SyncedCollection defining an interface for buffering.

The default behavior of this class is not to buffer. This class simply
defines an appropriate interface for buffering behavior so that client code
can rely on these methods existing, e.g. to be able to do things like with
collection.buffered.... This feature allows client code to indicate to the
collection when it is safe to buffer reads and writes, which usually means
guaranteeing that the synchronization destination (e.g. an underlying file
or database entry) will not be modified by other processes concurrently
with the set of operations within the buffered block. However, in the
default case the result of this will be a no-op and all data will be
immediately synchronized with the backend.

The BufferedCollection overrides the _load() and
_save() methods to check whether buffering is enabled
or not. If not, the behavior is identical to the parent class. When in buffered
mode, however, the BufferedCollection introduces two additional hooks that
can be overridden by subclasses to control how the collection behaves while buffered:

	_load_from_buffer(): Loads data while in buffered mode and returns
it in an object satisfying
is_base_type().
The default behavior is to simply call
_load_from_resource().

	_save_to_buffer(): Stores data while in buffered mode. The default behavior
is to simply call
_save_to_resource().

Thread safety

Whether or not buffering is thread safe depends on the buffering method used. In
general, both the buffering logic and the data type operations must be
thread safe for the resulting collection type to be thread safe.

	
_flush()

	Flush data associated with this instance from the buffer.

	
classmethod _flush_buffer()

	Flush all data in this class’s buffer.

	
_is_buffered

	Check if we should write to the buffer or not.

	
_load()

	Load data from the backend but buffer if needed.

This method is identical to the SyncedCollection
implementation except that it determines whether data is actually
synchronized or instead read from a temporary buffer based on the
buffering mode.

	
_load_from_buffer()

	Store data in buffer.

By default, this method simply calls _load_from_resource(). Subclasses
must implement specific buffering strategies.

	Returns

	An equivalent unsynced collection satisfying
is_base_type() that
contains the buffered data. By default, the buffered data is just the
data in the resource.

	Return type

	Collection

	
_save()

	Synchronize data with the backend but buffer if needed.

This method is identical to the SyncedCollection implementation for
sync except that it determines whether data is actually synchronized
or instead written to a temporary buffer based on the buffering mode.

	
_save_to_buffer()

	Store data in buffer.

By default, this method simply calls _save_to_resource(). Subclasses
must implement specific buffering strategies.

	
classmethod backend_is_buffered()

	Check if this backend is currently buffered.

	
classmethod buffer_backend(*args, **kwargs)

	Enter context to buffer all operations for this backend.

synced_collections.buffers.file_buffered_collection module

A standardized buffering implementation for file-based backends.

All file-based backends can use a similar buffering protocol. In particular,
integrity checks can be performed by checking for whether the file has been
modified since it was originally loaded into the buffer. However, various
specific components are abstract and must be implemented by child classes.

	
class signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection(parent=None, filename=None, *args, **kwargs)

	Bases: signac.synced_collections.buffers.buffered_collection.BufferedCollection

A SyncedCollection that can buffer file I/O.

This class provides a standardized buffering protocol for all file-based
backends. All file-based backends can use the same set of integrity checks
prior to a buffer flush to ensure that no conflicting modifications are
made. Specifically, they can check whether the file has been modified on
disk since it was originally loaded to the buffer. This class provides the
basic infrastructure for that and defines standard methods that can be used
by all classes. Subclasses must define the appropriate storage mechanism.

Note

	Important notes for developers:

	
	This class should be inherited before any other collections. This
requirement is due to the extensive use of multiple inheritance.
Since this class is designed to be combined with other
SyncedCollection types without making those types aware
of buffering behavior, it transparently hooks into the
initialization process, but this is dependent on its constructor
being called before those of other classes.

	All subclasses must define a class level _BUFFER_CAPACITY
variable that is used to determine the maximum allowable buffer
size.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

Warning

Although it can be done safely, in general modifying two different collections
pointing to the same underlying resource while both are in different buffering
modes is unsupported and can lead to undefined behavior. This class makes a
best effort at performing safe modifications, but it is possible to construct
nested buffered contexts for different objects that can lead to an invalid
buffer state, or even situations where there is no obvious indicator of what
is the canonical source of truth. In general, if you need multiple objects
pointing to the same resource, it is strongly recommeneded to work with
both of them in identical buffering states at all times.

	
classmethod buffer_backend(buffer_size=None, force_write=None, *args, **kwargs)

	Enter context to buffer all operations for this backend.

	Parameters

	
	buffer_size (int [https://docs.python.org/3/library/functions.html#int]) – The capacity of the buffer to use within this context (resets after
the context is exited).

	force_write (bool [https://docs.python.org/3/library/functions.html#bool]) – This argument does nothing and is only present for compatibility
with signac 1.x.

	
classmethod disable_multithreading()

	Disable all safety checks and thread locks required for thread safety.

This method adds managed buffer-related thread safety in addition to
what the parent method does.

	
classmethod enable_multithreading()

	Enable safety checks and thread locks required for thread safety.

This method adds managed buffer-related thread safety in addition to
what the parent method does.

	
classmethod get_buffer_capacity()

	Get the current buffer capacity.

	Returns

	The amount of data that can be stored before a flush is triggered
in the appropriate units for a particular buffering implementation.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod get_current_buffer_size()

	Get the total amount of data currently stored in the buffer.

	Returns

	The size of all data contained in the buffer in the appropriate
units for a particular buffering implementation.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod set_buffer_capacity(new_capacity)

	Update the buffer capacity.

	Parameters

	new_capacity (int [https://docs.python.org/3/library/functions.html#int]) – The new capacity of the buffer in the appropriate units for a particular
buffering implementation.

synced_collections.buffers.serialized_file_buffered_collection module

Buffering for file-based backends using a serialized buffer.

The buffering method implemented here involves a single buffer of serialized
data. All collections in buffered mode encode their data into this buffer on save
and decode from it on load.

	
class signac.synced_collections.buffers.serialized_file_buffered_collection.SerializedFileBufferedCollection(parent=None, filename=None, *args, **kwargs)

	Bases: signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection

A FileBufferedCollection based on a serialized data store.

This class extends the FileBufferedCollection and implements a
concrete storage mechanism in which data is encoded (by default, into JSON)
and stored into a buffer. This buffer functions as a central data store for
all collections and is a synchronization point for various collections
pointing to the same underlying file. This serialization method may be a
bottleneck in some applications; see the Warnings section for more information.

The buffer size and capacity for this class is measured in the total number
of bytes stored in the buffer that correspond to file data. This is not
the total size of the buffer, which also contains additional information
like the hash of the data and the file metadata (which are used for
integrity checks), but it is the relevant metric for users.

Note

Important note for subclasses: This class should be inherited before
any other collections. This requirement is due to the extensive use of
multiple inheritance: since this class is designed to be combined with
other SyncedCollection types without making those types aware
of buffering behavior, it transparently hooks into the initialization
process, but this is dependent on its constructor being called before
those of other classes.

Thread safety

This buffering method is thread safe. This thread safety is independent of the
safety of an individual collection backend; the backend must support thread
safe writes to the underlying resource in order for a buffered version using
this class to be thread safe for general use. The thread safety guaranteed
by this class only concerns buffer reads, writes, and flushes. All these
operations are serialized because there is no way to prevent one collection
from triggering a flush while another still thinks its data is in the cache.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

Warning

	Although it can be done safely, in general modifying two different collections
pointing to the same underlying resource while both are in different buffering
modes is unsupported and can lead to undefined behavior. This class makes a
best effort at performing safe modifications, but it is possible to construct
nested buffered contexts for different objects that can lead to an invalid
buffer state, or even situations where there is no obvious indicator of what
is the canonical source of truth. In general, if you need multiple objects
pointing to the same resource, it is strongly recommeneded to work with
both of them in identical buffering states at all times.

	The overhead of this buffering method is quite high due to the constant
encoding and decoding of data. For performance-critical applications where
memory is not highly constrained and virtual memory limits are absent, the
SharedMemoryFileBufferedCollection may be more appropriate.

	Due to the possibility of read operations triggering a flush, the
contents of the buffer may be invalidated on loads as well. To prevent this
even nominally read-only operations are serialized. As a result, although
this class is thread safe, it will effectively serialize all operations and
will therefore not be performant.

synced_collections.buffers.memory_buffered_collection module

A standardized buffering implementation for file-based backends.

The buffering method implemented here involves a single buffer of references to
in-memory objects containing data. These objects are the base types of a given
SyncedCollection type, e.g. a dict for all dict-like collections,
and are the underlying data stores for those types. This buffering method
exploits the fact that all mutable collection types in Python are references,
so modifying one such collection results in modifying all of them, thereby
removing any need for more complicated synchronization protocols.

	
class signac.synced_collections.buffers.memory_buffered_collection.SharedMemoryFileBufferedCollection(parent=None, filename=None, *args, **kwargs)

	Bases: signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection

A SyncedCollection that defers all I/O when buffered.

This class extends the FileBufferedCollection and implements a
concrete storage mechanism in which collections store a reference to their
data in a buffer. This method takes advantage of the reference-based semantics
of built-in Python mutable data types like dicts and lists. All collections
referencing the same file are pointed to the same underlying data store in
buffered mode, allowing all changes in one to be transparently reflected in
the others. To further improve performance, the buffer size is determined
only based on the number of modified collections stored, not the total number.
As a result, the maximum capacity is only reached when a large number of
modified collections are stored, and unmodified collections are only removed
from the buffer when a buffered context is exited (rather than when buffer
capacity is exhausted). See the Warnings section for more information.

The buffer size and capacity for this class is measured in the total number
of collections stored in the buffer that have undergone any modifications
since their initial load from disk. A sequence of read-only operations will
load data into the buffer, but the apparent buffer size will be zero.

Note

Important note for subclasses: This class should be inherited before
any other collections. This requirement is due to the extensive use of
multiple inheritance: since this class is designed to be combined with
other SyncedCollection types without making those types aware
of buffering behavior, it transparently hooks into the initialization
process, but this is dependent on its constructor being called before
those of other classes.

Thread safety

This buffering method is thread safe. This thread safety is independent of the
safety of an individual collection backend; the backend must support thread
safe writes to the underlying resource in order for a buffered version using
this class to be thread safe for general use. The thread safety guaranteed
by this class only concerns buffer reads, writes, and flushes. All these
operations are serialized because there is no way to prevent one collection
from triggering a flush while another still thinks its data is in the cache;
however, this shouldn’t be terribly performance-limiting since in buffered
mode we’re avoiding I/O anyway and that’s the only thing that can be effectively
parallelized here.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the associated JSON file on disk (Default value = None).

Warning

	Although it can be done safely, in general modifying two different collections
pointing to the same underlying resource while both are in different buffering
modes is unsupported and can lead to undefined behavior. This class makes a
best effort at performing safe modifications, but it is possible to construct
nested buffered contexts for different objects that can lead to an invalid
buffer state, or even situations where there is no obvious indicator of what
is the canonical source of truth. In general, if you need multiple objects
pointing to the same resource, it is strongly recommeneded to work with
both of them in identical buffering states at all times.

	This buffering method has no upper bound on the buffer size if all
operations on buffered objects are read-only operations. If a strict upper bound
is required, for instance due to strict virtual memory limits on a given system,
use of the SerializedFileBufferedCollection will allow limiting
the total memory usage of the process.

Miscellaneous Modules

synced_collections.utils module

Define common utilities.

	
class signac.synced_collections.utils.AbstractTypeResolver(abstract_type_identifiers, cache_blocklist=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mapping between recognized types and their abstract parents.

Synced collections are heavily reliant on checking the types of objects to
determine the appropriate type of behavior in various scenarios. For maximum
generality, most of these checks use the ABCs defined in collections.abc [https://docs.python.org/3/library/collections.abc.html#module-collections.abc].
The price of this flexibility is that isinstance checks with these classes
are very slow because the __instancecheck__ hooks are implemented in pure
Python and require checking many different cases.

Rather than attempting to directly optimize this behavior, this class provides
a workaround by which we can amortize the cost of type checks. Given a set
of types that must be resolved and a way to identify each of these (which
may be expensive), it maintains a local cache of all instances of a given
type that have previously been observed. This reduces the cost of type checking
to a simple dict lookup, except for the first time a new type is observed.

	Parameters

	
	abstract_type_identifiers (Mapping) – A mapping from a string identifier for a group of types (e.g. "MAPPING")
to a callable that can be used to identify that type. Due to insertion order
guarantees of dictionaries in Python>=3.6 (officially 3.7), it may be beneficial
to order this dictionary with the most frequently occuring types first.
However, unless users have many different concrete types implementing
the same abstract interface (e.g. many Mapping types identified via
isinstance(obj, Mapping)), any performance gain should be negligible
since the callables will only be executed once per type.

	cache_blocklist (Sequence, optional) – A sequence of string identifiers from abstract_type_identifiers that
should not be cached. If there are cases where objects of the same type
would be classified into separate groups based on the callables in
abstract_type_identifiers, this argument allows users to specify that
this type should not be cached. This argument should be used sparingly
because performance will quickly degrade if many calls to
get_type() are with types that cannot be cached. The identifiers
(keys in abstract_type_identifiers) corresponding to elements of the
blocklist should be placed first in the abstract_type_identifiers
dictionary since they will never be cached and are therefore the most
likely callables to be used repeatedly (Default value = None).

	
abstract_type_identifiers

	A mapping from string identifiers for an abstract type to callables that
accepts an object and returns True if the object is of the key type and
False if not.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[Any, bool [https://docs.python.org/3/library/functions.html#bool]]]

	
type_map

	A mapping from concrete types to the corresponding named abstract type
from abstract_type_identifiers.

	Type

	Dict[Type, str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_type(obj)

	Get the type string corresponding to this data type.

	Parameters

	obj (Any) – Any object whose type to check

	Returns

	The name of the type, where valid types are the keys of the dict
argument to the constructor. If the object’s type cannot be identified,
will return None.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class signac.synced_collections.utils.SyncedCollectionJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

A json.JSONEncoder [https://docs.python.org/3/library/json.html#json.JSONEncoder] that handles objects encodeable using default().

Warning

	JSON encoding of numpy arrays is not invertible; once encoded, reloading
the data will result in converting arrays to lists and numpy numbers into
ints or floats.

	This class assumes that the in-memory data for a SyncedCollection is
up-to-date. If the data has been changed on disk without updating the
collection, or if this class is used to serialize the data before any
method of the collection is invoked that would load the data from disk,
the resulting serialized data may be incorrect.

	
default(o: Any) → Dict[str, Any]

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
signac.synced_collections.utils.default(o: Any) → Dict[str, Any]

	Get a JSON-serializable version of compatible types.

This function is suitable for use with JSON-serialization tools as a way to
serialize SyncedCollection objects and NumPy arrays. It will
attempt to obtain a JSON-serializable representation of an object that is
otherwise not serializable by attempting to access its _data attribute.

Warning

	JSON encoding of numpy arrays is not invertible; once encoded, reloading
the data will result in converting arrays to lists and numpy numbers into
ints or floats.

	This function assumes that the in-memory data for a SyncedCollection is
up-to-date. If the data has been changed on disk without updating the
collection, or if this function is used to serialize the data before any
method is invoked that would load the data from disk, the resulting
serialized data may be incorrect.

synced_collections.validators module

Validators for SyncedCollection API.

A validator is any callable that raises Exceptions when called with invalid data.
Validators should act recursively for nested data structures and should not
return any values, only raise errors. This module implements built-in validators,
but client code is free to implement and add additioal validators to collection
types as needed.

	
signac.synced_collections.validators.json_format_validator(data)

	Validate input data can be serialized to JSON.

	Parameters

	data – Data to validate.

	Raises

	
	KeyTypeError – If key data type is not supported.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the data type of data is not supported.

	
signac.synced_collections.validators.no_dot_in_key(data)

	Raise an exception if there is a dot (.) in a mapping’s key.

	Parameters

	data – Data to validate.

	Raises

	
	KeyTypeError – If key data type is not supported.

	InvalidKeyError – If the key contains invalid characters or is otherwise malformed.

	
signac.synced_collections.validators.require_string_key(data)

	Raise an exception if key in a mapping is not a string.

Almost all supported backends require string keys.

	Parameters

	data – Data to validate.

	Raises

	KeyTypeError – If key type is not a string.

Changelog

The signac package follows semantic versioning [https://semver.org/].

Version 1

[1.7.0] – 2021-06-08

Added

	New SyncedCollection class and subclasses to replace JSONDict with more general support for different types of resources (such as MongoDB collections or Redis databases) and more complete support for different data types synchronized with files (#196, #234, #249, #316, #383, #397, #465, #484, #529, #530). This change introduces a minor-backwards incompatible change; for users making direct use of signac buffering, the force_write parameter is no longer respected. If the argument is passed, a warning will now be raised to indicate that it is ignored and will be removed in signac 2.0.

	Unified querying for state point and document filters using ‘sp’ and ‘doc’ as prefixes (#332, #514). This change introduces a minor backwards-incompatible change to the Collection index schema (‘statepoint’->’sp’), but this does not affect any APIs, only indexes saved to file using a previous version of signac. Indexing APIs will be removed in signac 2.0.

Changed

	Optimized internal path joins to speed up project iteration (#515).

Deprecated

	doc_filter arguments, which are replaced by namespaced filters. Due to their long history, doc_filter arguments will still be accepted in signac 2.0 and will only be removed in 3.0 (#516).

	The modules signac.core.attrdict, signac.core.json, signac.core.jsondict, and signac.core.synceddict.py are deprecated in favor of the new SyncedCollection classes and will be removed in signac 2.0 (#483).

Fixed

	Corrected docstrings for Job.update_statepoint and Project.update_statepoint (#506, #563).

[1.6.0] – 2021-01-24

Added

	Implemented JobsCursor.__contains__ check (#449).

	Added documentation for JobsCursor class (#475).

Changed

	Optimized job hash and equality checks (#442, #455).

	Optimized H5Store initialization (#443).

	State points are loaded lazily when Job is opened by id (#238, #239).

	Optimized Job and Project classes to cache internal properties and initialize on access (#451).

	Python 3.6 is only tested with oldest dependencies (#474).

	Improved documentation for updating and resetting state points (#444).

Deprecated

	Deprecate syncutil.copytree method (#439).

Fixed

	Zero-dimensional NumPy arrays can be used in state points and documents (#449).

[1.5.1] – 2020-12-19

Added

	Support for h5py version 3 (#411).

	Added pyupgrade to pre-commit hooks (#413).

	Code is formatted with black and isort pre-commit hooks (#415).

	Added macOS to CircleCI testing pipeline (#281, #414).

	Official support for Python 3.9 (#417).

Changed

	Optimized internal function _mkdir_p (#421).

	Optimized performance of job initialization (#422).

	Optimized performance of buffer storage (#428).

	Optimized performance of creating/loading synced data structures (#429).

[1.5.0] – 2020-09-20

Added

	Type annotations are validated during continuous integration (#313).

	Added _repr_html_ method in ProjectSchema class (#314, #324).

	Allow grouping by variables that are not present in all jobs in the project in JobsCursor.groupby (#321, #323).

	Added parameters usecols and flatten to allow selection of columns and flattening of nested data when converting signac data into a pandas DataFrame (#327, #330).

	Added support for pre-commit hooks [https://pre-commit.com/] (#355, #358).

	Expanded CLI documentation (#187, #359, #377).

Changed

	Docstrings are now written in numpydoc style [https://numpydoc.readthedocs.io/en/latest/format.html].

Fixed

	Fix the signac config verify command (previously broken) (#301, #302).

	Warnings now appear when raised by the signac CLI (#317, #308).

	Fix dots in synchronization error messages (#375, #376).

Deprecated

	Deprecate the create_access_modules method in Project, to be removed in 2.0 (#303, #308).

	The MainCrawler class has replaced the MasterCrawler class. Both classes are deprecated (#342).

Removed

	Dropped support for Python 3.5 (#340). The signac project will follow the NEP 29 deprecation policy [https://numpy.org/neps/nep-0029-deprecation_policy.html] going forward.

	Removed dependency on pytest-subtests (#379).

[1.4.0] – 2020-02-28

Added

	Added Windows to platforms tested with continuous integration (#264, #266).

	Add command line option -m/--merge for signac sync (#280, #230).

Changed

	Workspace directory is created when Project is initialized (#267, #271).

	Changed testing framework from unittest to pytest (#212, #275).

	Refactored internal use of deprecated get_statepoint function (#227, #282).

Fixed

	Fixed issues on Windows with H5Store, project import/export, and operations that move files (#264, #266).

	Calling items or values on _SyncedDict objects does not mutate nested dictionaries (#234, #269).

	Fixed issue with project.data access from separate instances of H5StoreManager (#274, #278).

	Fixed error when launching signac shell if permissions are denied for .signac_shell_history (#279).

Removed

	Removed vendored tqdm module and replaced it with a requirement (#289).

	Removed support for rapidjson as an alternative JSON library (#285, #287).

	Removed tuple of keys implementation of nested dictionaries (#272, #296).

[1.3.0] – 2019-12-20

Added

	Official support for Python 3.8 (#258).

	Add properties Project.id and Job.id (#250).

	Add signac.diff_jobs function and $ signac diff CLI command to compare two or more state points (#248, #247).

	Add function to initialize a sample data space for testing purposes (#215).

	Add schema version to ensure compatibility and enable migrations in future package versions (#165, #253).

Changed

	Implemented Project.__contains__ check in constant time (#231).

Fixed

	Attempting to create a linked view for a Project on Windows now raises an informative error message (#214, #236).

	Project configuration is initialized using ConfigObj, allowing the configuration to include commas and special characters (#251, #252).

Deprecated

	Deprecate the get_id method in Project and Job classes in favor of the id property, to be removed in 2.0 (#250).

	In-memory modification of the project configuration, to be removed in 2.0 (#246).

Removed

	Dropped support for Python 2.7 (#232).

[1.2.0] – 2019-07-22

Added

	Keep signac shell command history on a per-project basis (#134, #194).

	Add read_json() and to_json() methods to Collection class (#104, #200).

Fixed

	Fix issue where shallow copies of instances of Job would behave incorrectly (#153, #207).

	Fix issue causing a failure of the automatic conversion of valid key types (#168, #205).

	Improve the ‘dots in keys’ error message to make it easier to fix related issues (#170, #205).

	Update the __repr__ and __repr_html__ implementations of the Project, Job, and JobsCursor classes (#193).

	Reduce the logging verbosity about a missing default host key in the configuration (#201).

	Fix issue with incorrect detection of dict-like files managed with the DictManager class (e.g. job.stores) (#203).

	Fix issue with generating views from the command line for projects with only one job (#208, #211).

	Fix issue with heterogeneous types in state point values that are lists (#209, #210).

Deprecated

	Support for Python 2.7 is deprecated with this version and will be removed in the next minor release. See the Python 3 Statement [https://python3statement.org/].

[1.1.0] – 2019-05-19

Added

	Add command line options --sp and --doc for signac find that allow users to display key-value pairs of the state point and document in combination with the job id (#97, #146).

	Improve the representation (return value of repr()) of instances of H5Group and SyncedAttrDict.

Fixed

	Fix: Searches for whole numbers will match all numerically matching integers regardless of whether they are stored as decimals or whole numbers (#169).

	Fix: Passing an instance of dict to H5Store.setdefault() will return an instance of H5Group instead of a dict (#180).

	Fix error with storing numpy arrays and scalars in a synced dictionary (e.g. job.statepoint, job.document) (#184).

	Fix issue with ResourceWarning originating from unclosed instance of Collection (#186).

	Fix issue with using the get_project() function with a relative path and search=False (#191).

Removed

	Support for Python version 3.4 (no longer tested).

[1.0.0] – 2019-02-28

Added

	Official support for Python 3.7.

	The H5Store and H5StoreManager classes, which are useful for storing (numerical) array-like data with an HDF5-backend. These classes are exposed within the root namespace.

	The job.data and project.data properties which present an instance of H5Store to access numerical data within the job workspace and project root directory.

	The job.stores and project.stores properties, which present an instance of H5StoreManager to manage multiple instances of H5Store to store numerical array-like data within the project workspace and project root directory.

	The signac.get_job() and the signac.Project.get_job() functions that allow users to get a job handle by switching into or providing the job’s workspace directory.

	The job variable is automatically set when opening a signac shell from within a job’s workspace directory.

	Add the signac shell -c option which allows the direct specification of Python commands to be executed within the shell.

	Automatic cast of numpy arrays to lists when storing them within a JSONDict, e.g., a job.statepoint or job.document.

	Enable Collection class to manage collections stored in compressed files (gzip, zip, etc.).

	Enable deleting of JSONDict keys through the attribute interface, e.g., del job.doc.foo.

	Pretty HTML representation of instances of Project and JobsCursor targeted at Jupyter Notebooks (requires pandas, automatically enabled when installed).

	The to_dataframe() function to export the job state point and document data of a Project or a JobsCursor, e.g., the result of Project.find_jobs(), as a pandas.Dataframe (requires pandas).

Changed

	Dots (.) in keys are no longer allowed for JSONDict and Collection keys (previously deprecated).

	The JSONDict module is exposed in the root namespace, which is useful for storing text-serializable data with a JSON-backend similar to the job.statepoint or job.document, etc.

	The Job.init() method returns the job to allow one-line job creation and initialization.

	The search argument was added to the signac.get_project() function, which when True (the default), will cause signac to search for a project within and above a specified root directory, not only within the root directory. The behavior without any arguments remains unchanged.

Fixed

	Fix Collection.update() behavior such that existing documents with identical primary key are updated. Previously, a KeyError would be raised.

	Fix issue where the Job.move() would trigger a confusing DestinationExists exception when trying to move jobs across devices / file systems.

	Fix issue that caused failures when the python-rapidjson package is installed. The python-rapidjson package is used as the primary JSON-backend when installed.

	Fix issue where schema with multiple keys would subset incorrectly if the list of jobs or statepoints was provided as an iterator rather than a sequence.

Removed

	Removes the obsolete and deprecated core.search_engine module.

	The previously deprecated Project.find_statepoints() and Project.find_job_documents() functions have been removed.

	The Project.find_jobs() no longer accepts the obsolete index argument.

Version 0.9

[0.9.5] – 2019-01-31

Fixed

	Ensure that the next() function can be called for a JobsIterator, e.g., project.find().

	Pickling issue that occurs when a _SyncedDict (job.statepoint, job.document, etc.) contains a list.

	Issue with the readline module that would cause signac shell to fail on Windows operating systems.

[0.9.4] – 2018-10-24

Added

	Adds the $ signac import command and the Project.import_from() method for the import of data spaces into a project workspace, such as a directory, a tarball, or a zip file.

	Adds the $ signac export command and the Project.export_to() method for the export of project workspaces to an external location, such as a directory, a tarball, or a zip file.

	Adds functionality for the rapid initialization of temporary projects with the signac.TemporaryProject context manager.

	Adds the signac.Project.temporary_project() context manager which creates a temporary project within the root project workspace.

	Add signac to the default namespace when invoking signac shell.

	Add option to specify a custom view path for the signac view/ Project.create_linked_view() function.

	Iterables of documents used to construct a Collection no longer require an _id field.

Changed

	The default path for linked views has been adjusted to match the one used for data exports.

Fixed

	Fix issue where differently typed integer values stored within a Collection under the same key would not be indexed correctly. This issue affected the correct function of the $type operator for aforementioned cases and would lead to incorrect types in the Project schema detection algorithm for integer values.

	Fix issue where jobs that are migrated (state point change), but are not initialized, were not properly updated.

	Fix issue where changes to lists as part of synchronized dictionary, for example a state point or document would not be saved.

	Fix non-deterministic issue occuring on network file systems when trying to open jobs where the user has no write access to the job workspace directory.

[0.9.3] – 2018-06-14

Added

	Add $near operator to express queries for numerical values that match up to a certain precision.

	Add the $ signac shell sub command to directly launch a Python interpreter within a project directory.

Fixed

	Fix issue where a job instance would not be properly updated after more than one state point reset.

[0.9.2] – 2017-12-18

Added

	Add provisional feature (persistent state point caching); calling the Project.update_cache() method will generate and store a persistent state point cache in the project root directory, which will increase the speed of many project iteration, search, and selection operations.

	Add Project.check() method which checks for workspace corruption, but does not make any attempt to repair it.

	The Project.repair() method will attempt to repair jobs, that have been corrupted by manually renaming the job’s workspace directory.

Changed

	Enable the write_concern flag for the job.document.

	Allow to omit the specification of an authentication mechanism in the MongoDB host configuration.

Fixed

	Fix critical issue in the JSONDict implementation that would previously overwrite the underlying file when attempting to store values that are not JSON serializable.

	Fix issue where the Project.export() function would ignore the update argument when the index to export to would be a MongoDB collection.

[0.9.1] – 2017-11-07

Fixed

	Fix critical issue in the SyncedAttrDict implementation that would previously overwrite the underlying file if the first operation was a __setitem__() operation.

[0.9.0] – 2017-10-28

Added

	Introduction of $ signac sync, Project.sync(), and Job.sync() for the simplified and fine-grained synchronization of multiple project data spaces.

	Introduction of $ signac schema and Project.detect_schema() for the automatic detection of the implicit and semi-structured state point schema of a project data space.

	Simplified aggregation of jobs over projects and Project.find_jobs() results with the Project.groupby() function.

	Support for project-centralized data with the Project.document attribute and the Project.fn() method for the wrapping of filenames within the project root directory.

	Added the Job.clear() and the Job.reset() methods to clear or reset a job’s workspace data.

Changed

	Both Job.statepoint and Job.document now use the same underlying data structure and provide the exact same API (copy with () and access of keys as attributes).

	The Collection class uses an internal counter instead of UUIDs for the generation of primary keys (resulting in improved performance).

	Major performance improvements (faster Collection, improved caching)

	Overhaul of the reference documentation.

Version 0.8

[0.8.7] – 2017-10-05

Fixed

	Fix an issue where the creation of linked views was non-deterministic in some cases.

	Fix an issue where the creation of linked views would fail when the project contains job with state points that have lists as values.

[0.8.6] – 2017-08-25

Fixed

	Fix Collection append truncation issue (see issue #66).

[0.8.5] – 2017-06-07

Changed

	The signac ids in the signac find –show view are no longer enclosed by quotation marks.

Fixed

	Fix compatibility issue that broke the signac find –view and all –pretty commands on Python 2.7.

	Fix issue where view directories would be incomplete in combination with heterogeneous state point schemas.

[0.8.4] – 2017-05-19

Added

	All search queries on project and collection objects support various operators including: $and, $or, $gt, $gte, $lt, $lte, $eq, $ne, $exists, $regex, $where, $in, $nin, and $type.

	The $ signac find command supports a simple filter syntax, where key value pairs can be provided as individual arguments.

	The $ signac find command is extended by a –show option, to display the state point and the document contents directly. The contents are truncated to an adjustable depth to reduce output noise.

	The $ signac view command has an additional filter option to select a sub data space directly without needing to pipe job ids.

	The new $ signac document command can be used to display a job’s document directly.

Changed

	Minor performance improvements.

[0.8.3] – 2017-05-10

Changed

	Raise ExportError when updating with an empty index.

Fixed

	Fix command line logic issue with $signac config host.

	Fix bug, where Collection.replace_one() would ignore the upsert argument under specific conditions.

[0.8.2] – 2017-04-19

Fixed

	Fixes a TypeError which occurred under specific conditions when calling Collection.find() with nested filter arguments.

[0.8.1] – 2017-04-17

Fixed

	Fixes wide-spread typo (indeces -> indexes).

[0.8.0] – 2017-04-16

Overall major simplification of the generation of indexes and the management and searching of index collections without external database.

Added

	Introduction of the Collection class for the management of document collections, such as indexes in memory and on disk.

	Generation of file indexes directly via the signac.index_files() function.

	Generation of main indexes directly via the signac.index() function and the $ signac index command.

	The API of signac_access.py files has been simplified, including the possibility to use a blank file for a minimal configuration.

	Use the $ signac project --access command to create a minimal access module in addition to Project.create_access_module().

	The update of existing index collections has been simplified by using the export() function with the update=True argument, which means that stale documents (the associated file or state point no longer exists) are automatically identified and removed.

	Added the Job.ws attribute, as short-cut for Job.workspace().

	The Job.sp interface has a get() function which can be used to specify a default value in case that the requested key is not part of the state point.

Changed (breaking API)

	The $ signac index command generates a main index instead of a project index. To generate a project index from the command line use $ signac project --index instead.

	The SignacProjectCrawler class expects the project’s root directory as first argument, not the workspace directory.

	The get_crawlers() function defined within a signac_access.py access module is expected to yield crawler instances directly, not a mapping of crawler ids and instances.

	The simplification of the signac_access.py module API is reflected in a reduction of arguments to the Project.create_access_module() method.

Changed (non-breaking)

	The RegexFileCrawler, SignacProjectCrawler and MainCrawler classes were moved into the root namespace.

	If a MainCrawler object is instantiated with the raise_on_error argument set to True, any errors encountered during crawling are raised instead of ignored and skipped; this simplifies the debugging of erroneous access modules.

	Improved error message for invalid configuration files.

	Better error messages for invalid $ signac find queries.

	Check a host configuration on the command line via $ signac host --test.

	A MongoDB database host configuration defaults to none when no authentication method is explicitly specified.

	Using the --debug option in combination with $ signac index will show the traceback of errors encountered during indexing instead of ignoring them.

	Instances of Job are hashable, making it possible to use them as dict keys for instance.

	The representation of Job instances via repr() can actually serves as copy constructor command.

	The project interface implementation performs all non-trivial search operations on an internally management index collection, which improves performance and simplifies the code base.

Deprecated

	The DocumentSearchEngine class has been deprecated, its functionality is now provided by the Collection class.

Fixed

	An issue related to exporting documents to MongoDB collections via pymongo in combination with Python 2.7 has been fixed.

Version 0.7

[0.7.1] – 2017-01-09

Added

	When the python-rapidjson package is installed, it will be used for JSON encoding/decoding (experimental).

Changed

	All job move-related methods raise DestinationExistsError in case of destination conflicts.

	Optimized $ signac find command.

Fixed

	Fixed bug in $ signac statepoint.

	Suppress ‘broken pipe error’ message when using $ signac find for example in combination with $ head.

[0.7.0] – 2017-01-04

Added

	Add support for Python version 3.6.

	Add support for PyPy and PyPy3.

	Simplified iteration over project data spaces.

	An existing linked view can be updated by executing the view command again.

	Add attribute interface for the access and modification of job state points: Job.sp.

	Add function for moving and copying of jobs between projects.

	All project related iterators support the len-operator.

	Enable iteration over all jobs with: for job in project:.

	Make len(project) an alias for project.num_jobs().

	Add in-operator to determine whether a job is initialized within a project.

	Add Job.sp attribute to access and modify a job’s state point.

	The Project.open_job() method accepts abbreviated job ids.

	Add Project.min_len_unique_id() method to determine the minimum length of job ids to be unique within the project’s data space.

	Add Job.move() method to move jobs between projects.

	Add Project.clone() method to copy jobs between projects.

	Add $ signac move and $ signac clone command line functions.

	Add Job.reset_statepoint() method to reset a job’s state point.

	Add Job.update_statepoint() method to update a job’s state point.

	Add a Job.FN_DOCUMENT constant which defines the default filename of the job document file

	The $ signac find command accepts a -d/--doc-filter option to filter by job document contents.

	Add the Project.create_linked_view() method as replacement for the previously deprecated Project.create_view() method.

Changed

	Linked views use relative paths.

	The Guide documentation chapter has been renamed to Reference and generally overhauled.

	The Quick Reference documentation chapter has been extended.

Fixed

	Fix error when using an instance of Job after calling Job.remove().

	A project created in one the standard config directories (such as the home directory) does not take prevalence over project configurations in or above the current working directory.

Removed

	The signac-gui component has been removed.

	The Project.create_linked_view() force argument is removed.

	The Project.find_variable_parameters() method has been removed

Version 0.6

[0.6.2] – 2017-12-15

Added

	Add instructions on how to acknowledge signac in publications to documentation.

	Add cite module for the auto-generation of formatted references and BibTeX entries.

Removed

	Remove SSL authentication support.

[0.6.1] – 2017-11-26

Changed

	The Project.create_view() method triggers a DeprecationWarning instead of a PendingDeprecationWarning.

	The Project.find_variable_parameters() method triggers a DeprecationWarning instead of a PendingDeprecationWarning.

Fixed

	Make package more robust against PySide import errors.

	Fix Project.__repr__ method.

	Fix critical bug in fs.GridFS class, which rendered it unusuable.

	Fix issue in indexing.fetch() previously resulting in local paths being ignored.

	Fix error signac.__all__ namespace directive.

[0.6.0] – 2016-11-18

Added

	Add the export_to_mirror() function for mirroring files.

	Introduction of the signac.fs namespace to simplify the configuration of mirror filesystems.

	Add errors module to root namespace. Many exceptions raised inherit from the base exception types defined within that module, making it easier to catch signac related errors.

	Add the export_one() function for the export of a single index document; simplifies the implementation of custom export functions.

	Opening an instance of Job with the open_job() method multiple times and entering a job context recursively is now well-defined behavior: Opening a job now adds the current working directory onto a stack, closing it switches into the directory on top of the stack.

	The return type of Project.open_job() can be configured to make it easier to specialize projects with custom job types.

Changed

	The MainCrawler logic has been simplified; their primary function is the compilation of index documents from subcrawlers, all export logic, including data mirroring is now provided by the signac.export() function.

	Each index document is now uniquely coupled with only one file or data object, which is why signac.fetch() replaces signac.fetch_one() and the latter one has been deprecated and is currently an alias of the former one.

	The signac.fetch() function always returns a file-like object, regardless of format definition.

	The format argument in the crawler define() function is now optional and has now very well defined behavior for str types. It is encouraged to define a format with a str constant rather than a file-like object type.

	The TextFile file-like object class definition in the formats module has been replaced with a constant of type str.

	The signac.export() function automatically delegates to specialized implementations such as export_pymongo() and is more robust against errors, such as broken connections.

	The export_pymongo() function makes multiple automatic restart attempts when encountering errors.

	Documentation: The tutorial is now based on signac-examples jupyter notebooks.

	The contrib.crawler module has been renamed to contrib.indexing to better reflect the semantic context.

	The signac.export() function now implements the logic for data linking and mirroring.

	Provide default argument for ‘–indent’ option for $ signac statepoint command.

	Log, but do not reraise exceptions during MainCrawler execution, making the compilation of main indexes more robust against errors.

	The object representation of Job and Project instances is simplified.

	The warning verbosity has been reduced when importing modules with optional dependencies.

Removed

	All modules related to the stale conversion framework feature have been removed resulting in a removal of the optional networkx dependency.

	Multiple modules related to the conversion framework feature have been removed, including: contrib.formats_network, contrib.conversion, and contrib.adapters.

Fixed

	Opening instances of Job with the Job.open() method multiple times, equivalently entering the job context recursively, does not cause an error anymore, but instead the behavior is well-defined.

Version 0.5

[0.5.0] – 2016-08-31

Added

	New function: signac.init_project() simplifies project initialization within Python

	Added optional root argument to signac.get_project() to simplify getting a project handle outside of the current working directory

	Added optional argument to signac.get_project(), to allow fetching of projects outside of the current working directory.

	Added two class factory methods to Project: get_project() and init_project().

Changed

	The performance of project indexing and crawling has been improved.

Version 0.4

[0.4.0] – 2016-08-05

Added

	The performance of find operations can be greatly improved by using pre-generated job indexes.

	New top-level commands: $ signac find, $ signac index, $ signac statepoint, and $ signac view.

	New method: Project.create_linked_view()

	New method: Project.build_job_statepoint_index()

	New method: Project.build_job_search_index()

	The Project.find_jobs() method allows to filter by job document.

Changed

	The SignacProjectCrawler indexes all jobs, not only those with non-empty job documents.

	The signac.fetch_one() function returns None if no associated object can be fetched.

	The tutorial is restructured into multiple parts.

	Instructions for installation are separated from the guide.

Removed

	Remove previously deprecated crawl keyword argument in index export functions.

	Remove previously deprecated function common.config.write_config().

Version 0.3

[0.3.0] – 2016-06-23

Added

	Add contributing agreement and guidelines.

Changed

	Change license from MIT to BSD 3-clause license.

Version 0.2

[0.2.9] – 2016-06-06

Added

	Addition of the signac config command line API.

	Password updates are encrypted with bcrypt when passlib is installed.

	The user is prompted to enter missing credentials (username/password) in case that they are not stored in the configuration.

	The $ signac confg tool provides the --update-pw argument, which allows users to update their own password.

	Added MIT license, in addition, all source code files contain a short licensing header.

Changed

	Improved documentation on how to configure signac.

	The OSI classifiers are updated, including an upgrade of the development status to ‘4 - beta’.

Fixed

	Nested job state points can no longer get corrupted. This bug occurred when trying to operate on nested state point mappings.

Deprecated

	Deprecated pymongo versions 2.x are no longer supported.

[0.2.8] – 2016-04-18

Added

	Project is now in the root namespace.

	Add index() method to Project.

	Add create_access_module() method to Project.

	Add find_variable_parameters() method to Project.

	Add fn() method to Job, which prepends the job’s workspace path to a filename.

	The documentation contains a comprehensive tutorial

Changed

	The crawl() function yields only the index documents and not a tuple of (_id, doc).

	export() and export_pymongo() expect the index documents as first argument, not a crawler instance. The old API is still supported, but will trigger a DeprecationWarning.

[0.2.7] – 2016-02-29

Added

	Add job.isfile() method

Changed

	Optimize project.find_statepoints() and project.repair() functions.

[0.2.6] – 2016-02-20

Added

	Add job.reset_statepoint() and job.update_statepoint()

	Add job.remove() function

Changed

	Sanitize filter argument in all project.find_*() methods.

	The job.statepoint() function accurately represents saved statepoints, e.g. tuples are represented as lists, as there is no difference between tuples and lists in JSON.

	signac-gui does not block on database operations.

	signac-gui allows reload of databases and collections of connected hosts.

Fixed

	RegexFileCrawler define() class function only acts upon the actual specialization and not globally on all RegexFileCrawler classes.

	signac-gui does not crash when replica sets are configured.

[0.2.5] – 2016-02-10

Added

	Added signac.get_project(), signac.get_database(), signac.fetch() and signac.fetch_one() to top-level namespace.

	Added basic shell commands, see $ signac --help.

	Allow opening of jobs by id: project.open_job(id='abc123...').

	Mirror data while crawling.

	Use extra sources for fetch() and fetch_one().

	Add file system handler: LocalFS, handler for local file system.

	Add file system handler: GridFS, handler for MongoDB GridFS file system.

	Crawler tags, to control which crawlers are used for a specific index.

	Allow explicit job workspace creation with job.init().

	Forwarding of pymongo host configuration via signac configuration.

Changed

	Major reorganization of the documentation, split into: Overview, Guide, Quick Reference and API.

	Documentation: Add notes for system administrators about advanced indexing.

	Warn about outdated pymongo versions.

	Set zip_safe flag to true in setup.py.

	Remove dependency on six module, by adding it to the common subpackage.

Deprecated

Fixed

	Fixed hard import of pymongo bug (issue #24).

	Crawler issues with malformed documents.

[0.2.4] – 2016-01-11

Added

	Implement Project.repair() function for projects with corrupted workspaces.

	Allow environment variables in workspace path definition.

	Check and fix config permission errors.

Changed

	Increase robustness of job manifest file creation.

Fixed

	Fix project crawler deep directory issue (hotfix).

[0.2.3] – 2015-12-09

Fixed

	Fix a few bugs related to project views.

[0.2.2] – 2015-11-30

Fixed

	Fix SignacProjectCrawler super() bug.

[0.2.1] – 2015-11-29

Added

	Add support for Python 2.7

	Add signac-gui (early alpha)

	Allow specification of relative and default workspace paths

	Add the ability to create project views

	Add Project.find_*() functions to search the workspace

	Add function to write and read state point hash tables

[0.2.0] – 2015-11-05

	Major consolidation of the package.

	Remove all hard dependencies, but six.

Support and Development

To get help using the signac package, join the signac Slack workspace [https://signac.io/slack-invite/] or send an email to signac-support@umich.edu.

The signac package is hosted on GitHub [https://github.com/glotzerlab/signac] and licensed under the open-source BSD 3-Clause license.
Please use the repository’s issue tracker [https://github.com/glotzerlab/signac/issues] to report bugs or request new features.

Code contributions

This project is open-source.
Users are highly encouraged to contribute directly by implementing new features and fixing issues.
Development for packages as part of the signac framework should follow the general development guidelines outlined here [http://docs.signac.io/en/latest/community.html#contributions].

A brief summary of contributing guidelines are outlined in the CONTRIBUTING.md [https://github.com/glotzerlab/signac/blob/master/CONTRIBUTING.md] file as part of the repository.
All contributors must agree to the Contributor Agreement [https://github.com/glotzerlab/signac/blob/master/ContributorAgreement.md] before their pull request can be merged.

Set up a development environment

Start by forking [https://github.com/glotzerlab/signac/fork/] the project.

We highly recommend to setup a dedicated development environment,
for example with venv [https://docs.python.org/3/library/venv.html]:

~ $ python -m venv ~/envs/signac-dev
~ $ source ~/envs/signac-dev/bin/activate
(signac-dev) ~ $ pip install pre-commit

or alternatively with conda [https://conda.io/docs/]:

~ $ conda create -n signac-dev -c conda-forge python=3 pre-commit
~ $ conda activate signac-dev

Then clone your fork and install the package from source with:

(signac-dev) ~ $ cd path/to/my/fork/of/signac
(signac-dev) signac $ pip install -e .

The -e option stands for editable, which means that the package is directly loaded from the source code repository.
That means any changes made to the source code are immediately reflected upon reloading the Python interpreter.

The pre-commit tool [https://pre-commit.com/] is used to enforce code style guidelines.
To install the tool and configure pre-commit hooks, execute:

(signac-dev) signac $ pip install pre-commit
(signac-dev) signac $ pre-commit install

With the pre-commit hook, your code will be checked for syntax and style before you make a commit.
The continuous integration pipeline for the package will perform these checks as well, so running these tests before committing / pushing will prevent the pipeline from failing due to style-related issues.

The development workflow

Prior to working on a patch, it is advisable to create an issue [https://github.com/glotzerlab/signac/issues] that describes the problem or proposed feature.
This means that the code maintainers and other users get a chance to provide some input on the scope and possible limitations of the proposed changes, as well as advise on the actual implementation.

All code changes should be developed within a dedicated git branch and must all be related to each other.
Unrelated changes, such as minor fixes to unrelated bugs encountered during implementation, spelling errors, and similar typographical mistakes must be developed within a separate branch.

Branches should be named after the following pattern: <prefix>/issue-<#>-optional-short-description.
Choose from one of the following prefixes depending on the type of change:

	fix/: Any changes that fix the code and documentation.

	feature/: Any changes that introduce a new feature.

	release/: Reserved for release branches.

If your change does not seem to fall into any of the above mentioned categories, use misc/.

Once you are content with your changes, push the new branch to your forked repository and create a pull request into the main repository.
Feel free to push a branch before completion to get input from the maintainers and other users, but make sure to add a comment that clarifies that the branch is not ready for merge yet.

Testing

Prior to fixing an issue, implement unit tests that fail for the described problem.
New features must be tested with unit and integration tests.
To run tests, execute:

(signac-dev) signac $ python -m pytest tests/

Building documentation

Building documentation requires the sphinx [http://www.sphinx-doc.org/en/master/] package which you will need to install into your development environment.

(signac-dev) signac $ pip install Sphinx sphinx_rtd_theme

Then you can build the documentation from within the doc/ directory as part of the source code repository:

(signac-dev) signac $ cd doc/
(signac-dev) doc $ make html

Note

Documentation as part of the package should be largely limited to the API.
More elaborate documentation on how to integrate signac into a computational workflow should be documented as part of the framework documentation [https://docs.signac.io], which is maintained here [https://github.com/glotzerlab/signac-docs].

Updating the changelog

To update the changelog, add a one-line description to the changelog.txt [https://github.com/glotzerlab/signac/blob/master/changelog.txt] file within the next section.
For example:

next

- Fix issue with launching rockets to the moon.

[0.6.3] -- 2018-08-22

- Fix issue related to dynamic data spaces, ...

Just add the next section in case it doesn’t exist yet.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 signac	

 	
 	
 signac.cite	

 	
 	
 signac.errors	

 	
 	
 signac.sync	

 	
 	
 signac.synced_collections.backends.collection_json	

 	
 	
 signac.synced_collections.backends.collection_mongodb	

 	
 	
 signac.synced_collections.backends.collection_redis	

 	
 	
 signac.synced_collections.backends.collection_zarr	

 	
 	
 signac.synced_collections.buffers.buffered_collection	

 	
 	
 signac.synced_collections.buffers.file_buffered_collection	

 	
 	
 signac.synced_collections.buffers.memory_buffered_collection	

 	
 	
 signac.synced_collections.buffers.serialized_file_buffered_collection	

 	
 	
 signac.synced_collections.data_types.synced_collection	

 	
 	
 signac.synced_collections.data_types.synced_dict	

 	
 	
 signac.synced_collections.data_types.synced_list	

 	
 	
 signac.synced_collections.utils	

 	
 	
 signac.synced_collections.validators	

 	
 	
 signac.warnings	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	_backend (signac.synced_collections.data_types.synced_collection.SyncedCollection attribute)

 	_flush() (signac.synced_collections.buffers.buffered_collection.BufferedCollection method)

 	_flush_buffer() (signac.synced_collections.buffers.buffered_collection.BufferedCollection class method)

 	_from_base() (signac.synced_collections.data_types.synced_collection.SyncedCollection class method)

 	_is_buffered (signac.synced_collections.buffers.buffered_collection.BufferedCollection attribute)

 	_load() (signac.synced_collections.buffers.buffered_collection.BufferedCollection method)

 	(signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	_load_from_buffer() (signac.synced_collections.buffers.buffered_collection.BufferedCollection method)

 	_load_from_resource() (signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	
 	_LoadAndSave (class in signac.synced_collections.data_types.synced_collection)

 	_LoadSaveType (signac.synced_collections.data_types.synced_collection.SyncedCollection attribute)

 	_register_validators() (signac.synced_collections.data_types.synced_collection.SyncedCollection class method)

 	_save() (signac.synced_collections.buffers.buffered_collection.BufferedCollection method)

 	(signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	_save_to_buffer() (signac.synced_collections.buffers.buffered_collection.BufferedCollection method)

 	_save_to_resource() (signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	_to_base() (signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	_update() (signac.synced_collections.data_types.synced_collection.SyncedCollection method)

 	_validate() (signac.synced_collections.data_types.synced_collection.SyncedCollection method)

A

 	
 	abstract_type_identifiers (signac.synced_collections.utils.AbstractTypeResolver attribute)

 	AbstractTypeResolver (class in signac.synced_collections.utils)

 	
 	always() (signac.sync.FileSync static method)

 	append() (signac.synced_collections.data_types.synced_list.SyncedList method)

 	AuthenticationError

B

 	
 	backend_is_buffered() (signac.synced_collections.buffers.buffered_collection.BufferedCollection class method)

 	bibtex() (in module signac.cite)

 	buffer_backend() (signac.synced_collections.buffers.buffered_collection.BufferedCollection class method)

 	(signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	BufferedCollection (class in signac.synced_collections.buffers.buffered_collection)

 	BufferedFileError

 	BufferedJSONAttrDict (class in signac.synced_collections.backends.collection_json)

 	
 	BufferedJSONAttrList (class in signac.synced_collections.backends.collection_json)

 	BufferedJSONCollection (class in signac.synced_collections.backends.collection_json)

 	BufferedJSONDict (class in signac.synced_collections.backends.collection_json)

 	BufferedJSONList (class in signac.synced_collections.backends.collection_json)

 	BufferException

 	build_job_search_index() (signac.Project method)

 	build_job_statepoint_index() (signac.Project method)

C

 	
 	check() (signac.Project method)

 	clear() (signac.Collection method)

 	(signac.H5Store method)

 	(signac.contrib.job.Job method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	(signac.synced_collections.data_types.synced_list.SyncedList method)

 	client (signac.synced_collections.backends.collection_redis.RedisCollection attribute)

 	clone() (signac.Project method)

 	close() (signac.Collection method)

 	(signac.H5Store method)

 	(signac.contrib.job.Job method)

 	
 	cls (signac.H5StoreManager attribute)

 	codec (signac.synced_collections.backends.collection_zarr.ZarrCollection attribute)

 	Collection (class in signac)

 	collection (signac.synced_collections.backends.collection_mongodb.MongoDBCollection attribute)

 	config (signac.Project attribute)

 	ConfigError

 	COPY (signac.sync.DocSync attribute)

 	create_access_module() (signac.Project method)

 	create_linked_view() (signac.Project method)

D

 	
 	data (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	default() (in module signac.synced_collections.utils)

 	(signac.synced_collections.utils.SyncedCollectionJSONEncoder method)

 	delete_many() (signac.Collection method)

 	delete_one() (signac.Collection method)

 	DestinationExistsError

 	detect_schema() (signac.Project method)

 	diff_jobs() (in module signac)

 	disable_multithreading() (signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	(signac.synced_collections.data_types.synced_collection.SyncedCollection class method)

 	
 	doc (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	DocSync (class in signac.sync)

 	DocSync.ByKey (class in signac.sync)

 	document (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	DocumentSyncConflict

 	dump() (signac.Collection method)

 	dump_statepoints() (signac.Project method)

E

 	
 	enable_multithreading() (signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	(signac.synced_collections.data_types.synced_collection.SyncedCollection class method)

 	Error

 	export() (in module signac)

 	export_one() (in module signac)

 	
 	export_pymongo() (in module signac)

 	export_to() (signac.contrib.project.JobsCursor method)

 	(signac.Project method)

 	export_to_mirror() (in module signac)

 	ExportError

 	extend() (signac.synced_collections.data_types.synced_list.SyncedList method)

F

 	
 	fetch() (in module signac)

 	FetchError

 	file (signac.H5Store attribute)

 	FileBufferedCollection (class in signac.synced_collections.buffers.file_buffered_collection)

 	filename (signac.errors.FileSyncConflict attribute)

 	(signac.H5Store attribute)

 	(signac.synced_collections.backends.collection_json.JSONCollection attribute)

 	files (signac.errors.BufferedFileError attribute)

 	FileSync (class in signac.sync)

 	FileSync.Ask (class in signac.sync)

 	FileSyncConflict

 	find() (signac.Collection method)

 	
 	find_job_ids() (signac.Project method)

 	find_jobs() (signac.Project method)

 	find_one() (signac.Collection method)

 	flush() (in module signac)

 	(signac.Collection method)

 	(signac.H5Store method)

 	fn() (signac.contrib.job.Job method)

 	(signac.Project method)

 	FN_CACHE (signac.Project attribute)

 	FN_DOCUMENT (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	FN_MANIFEST (signac.contrib.job.Job attribute)

 	FN_STATEPOINTS (signac.Project attribute)

G

 	
 	get() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	get_buffer_capacity() (signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	get_current_buffer_size() (signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	get_database() (in module signac)

 	get_id() (signac.contrib.job.Job method)

 	(signac.Project method)

 	get_job() (in module signac)

 	(signac.Project class method)

 	
 	get_project() (in module signac)

 	(signac.Project class method)

 	get_statepoint() (signac.Project method)

 	get_type() (signac.synced_collections.utils.AbstractTypeResolver method)

 	group (signac.synced_collections.backends.collection_zarr.ZarrCollection attribute)

 	groupby() (signac.contrib.project.JobsCursor method)

 	(signac.Project method)

 	groupbydoc() (signac.contrib.project.JobsCursor method)

 	(signac.Project method)

H

 	
 	H5Store (class in signac)

 	
 	H5StoreManager (class in signac)

 	HDF5 integration

I

 	
 	id (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	ids (signac.Collection attribute)

 	import_from() (signac.Project method)

 	IncompatibleSchemaVersion

 	index() (in module signac)

 	(signac.Collection method)

 	(signac.Project method)

 	index_files() (in module signac)

 	init() (signac.contrib.job.Job method)

 	init_project() (in module signac)

 	(signac.Project class method)

 	
 	insert() (signac.synced_collections.data_types.synced_list.SyncedList method)

 	insert_one() (signac.Collection method)

 	InvalidKeyError

 	is_base_type() (signac.synced_collections.data_types.synced_collection.SyncedCollection class method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict class method)

 	(signac.synced_collections.data_types.synced_list.SyncedList class method)

 	isfile() (signac.contrib.job.Job method)

 	(signac.Project method)

 	items() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

J

 	
 	Job (class in signac.contrib.job)

 	JobsCorruptedError

 	JobsCursor (class in signac.contrib.project)

 	json_attr_dict_validator() (in module signac.synced_collections.backends.collection_json)

 	json_format_validator() (in module signac.synced_collections.validators)

 	
 	JSONAttrDict (class in signac.synced_collections.backends.collection_json)

 	JSONAttrList (class in signac.synced_collections.backends.collection_json)

 	JSONCollection (class in signac.synced_collections.backends.collection_json)

 	JSONDict (class in signac.synced_collections.backends.collection_json)

 	(in module signac)

 	JSONList (class in signac.synced_collections.backends.collection_json)

K

 	
 	key (signac.synced_collections.backends.collection_redis.RedisCollection attribute)

 	KEY_DATA (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	keys (signac.errors.DocumentSyncConflict attribute)

 	
 	keys() (signac.H5Store method)

 	(signac.H5StoreManager method)

 	(signac.sync.FileSync class method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	KeyTypeError

M

 	
 	main() (signac.Collection method)

 	MemoryBufferedJSONAttrDict (class in signac.synced_collections.backends.collection_json)

 	MemoryBufferedJSONAttrList (class in signac.synced_collections.backends.collection_json)

 	MemoryBufferedJSONCollection (class in signac.synced_collections.backends.collection_json)

 	MemoryBufferedJSONDict (class in signac.synced_collections.backends.collection_json)

 	MemoryBufferedJSONList (class in signac.synced_collections.backends.collection_json)

 	
 	min_len_unique_id() (signac.Project method)

 	mode (signac.H5Store attribute)

 	MongoDB database backend

 	MongoDBCollection (class in signac.synced_collections.backends.collection_mongodb)

 	MongoDBDict (class in signac.synced_collections.backends.collection_mongodb)

 	MongoDBList (class in signac.synced_collections.backends.collection_mongodb)

 	move() (signac.contrib.job.Job method)

N

 	
 	name (signac.synced_collections.backends.collection_zarr.ZarrCollection attribute)

 	never() (signac.sync.FileSync static method)

 	next() (signac.contrib.project.JobsCursor method)

 	
 	no_dot_in_key() (in module signac.synced_collections.validators)

 	NO_SYNC (signac.sync.DocSync attribute)

 	num_jobs() (signac.Project method)

O

 	
 	open() (signac.Collection class method)

 	(signac.H5Store method)

 	(signac.contrib.job.Job method)

 	
 	open_job() (signac.Project method)

P

 	
 	pop() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	popitem() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	
 	prefix (signac.H5StoreManager attribute)

 	primary_key (signac.Collection attribute)

 	Project (class in signac)

R

 	
 	read_json() (signac.Collection class method)

 	read_statepoints() (signac.Project method)

 	RedisCollection (class in signac.synced_collections.backends.collection_redis)

 	RedisDict (class in signac.synced_collections.backends.collection_redis)

 	RedisList (class in signac.synced_collections.backends.collection_redis)

 	reference() (in module signac.cite)

 	remove() (signac.contrib.job.Job method)

 	(signac.synced_collections.data_types.synced_list.SyncedList method)

 	
 	repair() (signac.Project method)

 	replace_one() (signac.Collection method)

 	require_string_key() (in module signac.synced_collections.validators)

 	reset() (signac.contrib.job.Job method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	(signac.synced_collections.data_types.synced_list.SyncedList method)

 	reset_statepoint() (signac.contrib.job.Job method)

 	(signac.Project method)

 	root_directory() (signac.Project method)

S

 	
 	SchemaSyncConflict

 	SerializedFileBufferedCollection (class in signac.synced_collections.buffers.serialized_file_buffered_collection)

 	set_buffer_capacity() (signac.synced_collections.buffers.file_buffered_collection.FileBufferedCollection class method)

 	setdefault() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	SharedMemoryFileBufferedCollection (class in signac.synced_collections.buffers.memory_buffered_collection)

 	signac (module)

 	signac.cite (module)

 	signac.errors (module)

 	signac.sync (module)

 	signac.synced_collections.backends.collection_json (module)

 	signac.synced_collections.backends.collection_mongodb (module)

 	signac.synced_collections.backends.collection_redis (module)

 	signac.synced_collections.backends.collection_zarr (module)

 	signac.synced_collections.buffers.buffered_collection (module)

 	signac.synced_collections.buffers.file_buffered_collection (module)

 	signac.synced_collections.buffers.memory_buffered_collection (module)

 	signac.synced_collections.buffers.serialized_file_buffered_collection (module)

 	signac.synced_collections.data_types.synced_collection (module)

 	
 	signac.synced_collections.data_types.synced_dict (module)

 	signac.synced_collections.data_types.synced_list (module)

 	signac.synced_collections.utils (module)

 	signac.synced_collections.validators (module)

 	signac.warnings (module)

 	SignacDeprecationWarning

 	sp (signac.contrib.job.Job attribute)

 	statepoint (signac.contrib.job.Job attribute)

 	StatepointParsingError

 	stores (signac.contrib.job.Job attribute)

 	(signac.Project attribute)

 	sync() (signac.contrib.job.Job method)

 	(signac.Project method)

 	sync_jobs() (in module signac.sync)

 	sync_projects() (in module signac.sync)

 	SyncConflict

 	SyncedCollection (class in signac.synced_collections.data_types.synced_collection)

 	SyncedCollectionJSONEncoder (class in signac.synced_collections.utils)

 	SyncedDict (class in signac.synced_collections.data_types.synced_dict)

 	SyncedList (class in signac.synced_collections.data_types.synced_list)

T

 	
 	temporary_project() (signac.Project method)

 	TemporaryProject() (in module signac)

 	to_dataframe() (signac.contrib.project.JobsCursor method)

 	(signac.Project method)

 	
 	to_json() (signac.Collection method)

 	type_map (signac.synced_collections.utils.AbstractTypeResolver attribute)

U

 	
 	uid (signac.synced_collections.backends.collection_mongodb.MongoDBCollection attribute)

 	update() (signac.Collection method)

 	(signac.H5Store method)

 	(signac.sync.DocSync static method)

 	(signac.sync.FileSync static method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

 	
 	update_cache() (signac.Project method)

 	update_statepoint() (signac.contrib.job.Job method)

 	(signac.Project method)

V

 	
 	values() (signac.H5Store method)

 	(signac.synced_collections.data_types.synced_dict.SyncedDict method)

W

 	
 	workspace() (signac.contrib.job.Job method)

 	(signac.Project method)

 	
 	WorkspaceError

 	write_statepoints() (signac.Project method)

 	ws (signac.contrib.job.Job attribute)

Z

 	
 	ZarrCollection (class in signac.synced_collections.backends.collection_zarr)

 	
 	ZarrDict (class in signac.synced_collections.backends.collection_zarr)

 	ZarrList (class in signac.synced_collections.backends.collection_zarr)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/logo.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Signac (core) package documentation

 		
 Installation

 		
 Install with conda

 		
 Install with pip

 		
 Source Code Installation

 		
 Optional dependencies

 		
 Command Line Interface

 		
 clone

 		
 config

 		
 diff

 		
 document

 		
 export

 		
 find

 		
 import

 		
 index

 		
 init

 		
 job

 		
 move

 		
 project

 		
 rm

 		
 schema

 		
 shell

 		
 statepoint

 		
 sync

 		
 update-cache

 		
 view

 		
 API Reference

 		
 The Project

 		
 The JobsCursor class

 		
 The Job class

 		
 The Collection

 		
 The JSONDict

 		
 The H5Store

 		
 The H5StoreManager

 		
 Top-level functions

 		
 Submodules

 		
 signac.cite module

 		
 signac.sync module

 		
 signac.warnings module

 		
 signac.errors module

 		
 synced_collections package

 		
 Data Types

 		
 Backends

 		
 Buffers

 		
 Miscellaneous Modules

 		
 Changelog

 		
 Version 1

 		
 [1.7.0] – 2021-06-08

 		
 [1.6.0] – 2021-01-24

 		
 [1.5.1] – 2020-12-19

 		
 [1.5.0] – 2020-09-20

 		
 [1.4.0] – 2020-02-28

 		
 [1.3.0] – 2019-12-20

 		
 [1.2.0] – 2019-07-22

 		
 [1.1.0] – 2019-05-19

 		
 [1.0.0] – 2019-02-28

 		
 Version 0.9

 		
 [0.9.5] – 2019-01-31

 		
 [0.9.4] – 2018-10-24

 		
 [0.9.3] – 2018-06-14

 		
 [0.9.2] – 2017-12-18

 		
 [0.9.1] – 2017-11-07

 		
 [0.9.0] – 2017-10-28

 		
 Version 0.8

 		
 [0.8.7] – 2017-10-05

 		
 [0.8.6] – 2017-08-25

 		
 [0.8.5] – 2017-06-07

 		
 [0.8.4] – 2017-05-19

 		
 [0.8.3] – 2017-05-10

 		
 [0.8.2] – 2017-04-19

 		
 [0.8.1] – 2017-04-17

 		
 [0.8.0] – 2017-04-16

 		
 Version 0.7

 		
 [0.7.1] – 2017-01-09

 		
 [0.7.0] – 2017-01-04

 		
 Version 0.6

 		
 [0.6.2] – 2017-12-15

 		
 [0.6.1] – 2017-11-26

 		
 [0.6.0] – 2016-11-18

 		
 Version 0.5

 		
 [0.5.0] – 2016-08-31

 		
 Version 0.4

 		
 [0.4.0] – 2016-08-05

 		
 Version 0.3

 		
 [0.3.0] – 2016-06-23

 		
 Version 0.2

 		
 [0.2.9] – 2016-06-06

 		
 [0.2.8] – 2016-04-18

 		
 [0.2.7] – 2016-02-29

 		
 [0.2.6] – 2016-02-20

 		
 [0.2.5] – 2016-02-10

 		
 [0.2.4] – 2016-01-11

 		
 [0.2.3] – 2015-12-09

 		
 [0.2.2] – 2015-11-30

 		
 [0.2.1] – 2015-11-29

 		
 [0.2.0] – 2015-11-05

 		
 Support and Development

 		
 Code contributions

 		
 Set up a development environment

 		
 The development workflow

 		
 Testing

 		
 Building documentation

 		
 Updating the changelog

_static/up-pressed.png

_static/up.png

